Atnaujinkite slapukų nuostatas

El. knyga: From Riemann to Differential Geometry and Relativity

Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Oct-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319600390
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Oct-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319600390

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.


Preamble
1 Looking Backward: From Euler to Riemann
1(96)
Amanase Papadopoulos
1 Introduction
2(8)
2 Functions
10(10)
3 Elliptic Integrals
20(10)
4 Abelian Functions
30(2)
5 Hypergeometric Series
32(1)
6 The Zeta Function
33(7)
7 On Space
40(6)
8 Topology
46(14)
9 Differential Geometry
60(6)
10 Trigonometric Series
66(10)
11 Integration
76(2)
12 Conclusion
78(19)
References
81(16)
Part I Mathematics and Physics
2 Riemann on Geometry, Physics, and Philosophy---Some Remarks
97(14)
Jeremy Gray
1 Introduction
97(1)
2 The Hypotheses
98(3)
3 Influences
101(5)
4 Heat Diffusion and the Commentatio
106(5)
References
108(3)
3 Some Remarks on "A Contribution to Electrodynamics" by Bernhard Riemann
111(14)
Hubert Goenner
1 Introduction Ill
2 Riemann's New Result of 1858: The Retarded Potential
112(2)
3 Gauss, Weber, and Riemann on Electrodynamic Interaction
114(3)
4 Riemann's Paper
117(2)
5 Concluding Remarks
119(6)
References
122(3)
4 Riemann's Memoir Uber das Verschwinden der υ-Functionen
125(10)
Christian Houzel
1 Jacobi's Inversion Problem
125(3)
2 A Crucial Observation on Theta Functions
128(1)
3 The First Step of Riemann's Proof
129(1)
4 The Second Step of Riemann's Proof
130(1)
5 The Conclusion of the Proof
130(3)
6 Later Developments
133(2)
References
133(2)
5 Riemann's Work on Minimal Surfaces
135(16)
Sumio Yamada
1 Introduction
135(1)
2 On the Surface of Least Area with a Given Boundary
136(11)
3 Representation Formulas by Riemann and Weierstrass-Enneper
147(2)
4 Closing Remarks
149(2)
References
150(1)
6 Physics in Riemann's Mathematical Papers
151(58)
Athanase Papadopoulos
1 Introduction
151(11)
2 Function Theory and Riemann Surfaces
162(11)
3 Riemann's Memoir on Trigonometric Series
173(8)
4 Riemann's Habilitationsvortrag 1854---Space and Matter
181(12)
5 The Commentatio and the Gleichgewicht der Electricitat
193(2)
6 Riemann's Other Papers
195(4)
7 Conclusion
199(10)
References
199(10)
7 Cauchy and Puiseux: Two Precursors of Riemann
209(28)
Athanase Papadopoulos
1 Introduction
209(1)
2 Algebraic Functions and Uniformization
210(2)
3 Puiseux and Uniformization
212(8)
4 Cauchy and His Work on Functions of a Complex Variable
220(10)
5 Uniformization Again
230(7)
References
232(5)
8 Riemann Surfaces: Reception by the French School
237(58)
Athanase Papadopoulos
1 Introduction
238(2)
2 Riemann Surfaces
240(4)
3 The Nineteenth-Century French Treatises on Analysis
244(27)
4 Simart's Dissertation
271(4)
5 Other French Dissertations and Other Works of Riemann
275(6)
6 On the Relations Between the French and German Mathematicians
281(3)
7 In a Way of Conclusion
284(11)
References
286(9)
Part II Philosophy
9 The Origin of the Notion of Manifold: From Riemann's Habilitationsvortrag Onward
295(16)
Ken'ichi Ohshika
1 Introduction
295(1)
2 Kantian Worldview
296(2)
3 Riemann's Habilitationsvortrag
298(3)
4 Poincare's Analysis Situs
301(4)
5 Definitions Using Local Charts According to Hilbert, Weyl, Kneser and Veblen-Whitehead
305(3)
6 Conclusion: Philosophical Significance
308(3)
References
308(3)
10 Deleuze et la Geometrie Riemannienne: Une Topologie des Multiplicites
311(18)
Franck Jedrzejewski
1 Introduction
311(1)
2 Variete et multiplicite
312(4)
3 Espaces, mesures et multiplicites
316(3)
4 Typologies des multiplicites
319(5)
5 Conclusion
324(1)
6 Extended English Abstract
325(4)
References
327(2)
11 Comprehending the Connection of Things: Bernhard Riemann and the Architecture of Mathematical Concepts
329(38)
Arkady Plotnitsky
1 Introduction
329(7)
2 Philosophy: Planes of Thought and the Architecture of Concepts
336(7)
3 Mathematics: Space, Geometry, and the Concept of Manifold
343(10)
4 Physics: "The Reality Underlying Space"
353(8)
5 Conclusion
361(6)
References
362(5)
Part III Some Recent Developments
12 The Riemann Mapping Theorem and Its Discrete Counterparts
367(22)
Feng Luo
1 Introduction
367(1)
2 Koebe-Andreev-Thurston's Circle Packing Theorem
368(7)
3 A Discrete Uniformization Theorem
375(14)
References
387(2)
13 The Riemann-Roch Theorem
389(24)
Norbert A'Campo
Vincent Alberge
Elena Frenkel
1 Introduction
389(2)
2 Line Bundles
391(5)
3 Sheaf Cohomology
396(4)
4 Further Preparations
400(5)
5 The Riemann-Roch Theorem
405(2)
6 Divisors and the Riemann-Roch Theorem
407(2)
7 The Use of the Riemann-Roch Theorem in Teichmuller's Work
409(4)
References
410(3)
14 Metric Geometries in an Axiomatic Perspective
413(44)
Victor Pambuccian
Horst Struve
Rolf Struve
1 Introduction
414(8)
2 Metric Planes
422(11)
3 Higher-Dimensional Metric Spaces
433(3)
4 The Dimension-Free Case
436(1)
5 Projective-Metric Geometry
437(5)
6 Cayley-Klein Geometries
442(15)
References
451(6)
15 Generalized Riemann Sums
457(24)
Toshikazu Sunada
1 Introduction
457(3)
2 Generalized Riemann Sums
460(2)
3 Classical Example 1
462(2)
4 Classical Example 2
464(4)
5 The Inclusion-Exclusion Principle
468(4)
6 Generalized Poisson Summation Formulas
472(3)
7 Is Zdprim a Quasicrystal?
475(6)
References
478(3)
16 From Riemannian to Relativistic Diffusions
481(34)
Jacques Franchi
1 Introduction
481(3)
2 Euclidean Brownian Motion
484(2)
3 Riemannian Brownian Motion
486(1)
4 The Relativistic Dudley Diffusion in Minkowski Space
487(3)
5 The Lorentzian Frame Bundle G(M) over (M, g)
490(3)
6 The Basic Relativistic Diffusion
493(7)
7 Covariant Ξ-relativistic Diffusions
500(3)
8 Example of Robertson-Walker (R-W) Manifolds
503(6)
9 Sectional Relativistic Diffusion
509(6)
References
510(5)
Part IV Relativity
17 On the Positive Mass Theorem for Closed Riemannian Manifolds
515(26)
Andreas Hermann
Emmanuel Humbert
1 Introduction
515(2)
2 ADM Mass in General Relativity
517(10)
3 The Mass of a Closed Manifold
527(5)
4 Equivalence of the Two Positive Mass Conjectures
532(1)
5 Some Recent Results on the Positive Mass Conjecture
533(2)
6 An Idea of the Proof of Theorem 5.2
535(3)
7 Preservation of Mass by Surgery
538(3)
References
539(2)
18 On Local Characterization Results in Geometry and Gravitation
541(30)
Marc Mars
1 Introduction
541(1)
2 Classical Characterizations
542(4)
3 Local Characterizations of the Schwarzschild and Kruskal Spacetimes
546(9)
4 Local Characterization of pp-Waves and Related Spacetimes
555(4)
5 Local Characterizations of the Kerr, Kerr-Newman and Kerr-De Sitter Metrics
559(12)
References
567(4)
19 The Conformal Approach to Asymptotic Analysis
571(42)
Jean-Philippe Nicolas
1 Introduction
571(3)
2 Conformal Compactification
574(7)
3 Peeling
581(12)
4 Conformal Scattering
593(14)
5 Concluding Remarks
607(6)
References
607(6)
Part V Concluding
Chapter
20 Bernhard Riemann and His Work
613(24)
Lizhen Ji
1 Introduction
613(2)
2 Riemann's Work I: His Best Known Works
615(4)
3 Riemann's Work II: Some Little Known or Even Unknown Works
619(2)
4 Riemann's Publications and his Impact
621(8)
5 How Riemann Developed
629(3)
6 People Who Influenced Riemann
632(5)
References
634(3)
Index 637
Lizhen Ji is a specialist in geometry and the author and editor of numerous books and articles. He currently teaches at Michigan and at several universities in China, and serves as an editor for several journals. Athanase Papadopoulos is the author/editor of 100 papers and over 20 books on mathematics and the history of mathematics. Directeur de Recherche at the CNRS, he has also been a visiting scholar at several universities and research centers (Princeton, MPI Bonn, ESI Vienna, CUNY New York, USC Los Angeles, etc.).  Sumio Yamada has worked extensively in the US and Japan (Tohoku in Sendai, followed by Gakushuin in Tokyo). He is the author of several research articles.  Lizhen Ji, A. Papadopoulos and S. Yamada have engaged in several fruitful scientific collaborations.