|
1 Comprehensive Array of Ample Analytical Strategies for Characterization of Nanomaterials |
|
|
|
|
|
|
|
|
|
2 | (1) |
|
1.2 Overview of Physiochemical Characteristics of Nanomaterials |
|
|
2 | (1) |
|
|
2 | (2) |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.3.3 Composition and Purity |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.4 Techniques for Physicochemical Characterization of NPs |
|
|
4 | (21) |
|
1.4.1 Microscopic Techniques |
|
|
4 | (1) |
|
1.4.1.1 Near-Field Scanning Optical Microscopy (NSOM) |
|
|
5 | (1) |
|
1.4.1.2 Scanning Electron Microscopy (SEM) |
|
|
5 | (1) |
|
1.4.1.3 Transmission Electron Microscopy (TEM) |
|
|
6 | (1) |
|
1.4.1.4 Scanning Tunneling Microscopy (STM) |
|
|
7 | (1) |
|
1.4.1.5 Atomic Force Microscopy (AFM) |
|
|
7 | (1) |
|
1.4.2 Spectroscopic Techniques |
|
|
7 | (1) |
|
1.4.2.1 Optical Spectroscopy |
|
|
7 | (1) |
|
1.4.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy |
|
|
8 | (1) |
|
1.4.2.3 Fluorescence Spectroscopy |
|
|
8 | (1) |
|
1.4.2.4 Fluorescence Correlation Spectroscopy (FCS) |
|
|
9 | (1) |
|
1.4.2.5 Confocal Correlation Spectroscopy (CCS) |
|
|
9 | (1) |
|
1.4.2.6 Infrared (IR) Spectroscopy |
|
|
9 | (1) |
|
1.4.2.7 Raman Scattering (RS) |
|
|
10 | (1) |
|
1.4.2.8 Nuclear Magnetic Resonance (NMR) |
|
|
10 | (1) |
|
1.4.2.9 Mass Spectrometry (MS) |
|
|
11 | (1) |
|
1.4.2.10 Circular Dichroism (CD) |
|
|
11 | (1) |
|
1.4.3 Miscellaneous Techniques |
|
|
11 | (1) |
|
1.4.3.1 Dynamic Light Scattering (DLS) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.4.3.3 X-Ray Diffraction (XRD) |
|
|
12 | (1) |
|
1.4.3.4 Thermal Gravimetric Analysis (TGA) |
|
|
13 | (1) |
|
1.4.3.5 Quartz Crystal Microbalance (QCM) |
|
|
13 | (1) |
|
1.4.3.6 Differential Scanning Calorimetry (DSC) |
|
|
13 | (1) |
|
1.4.3.7 Vibrating Sample Magnetometer (VSM) |
|
|
14 | (1) |
|
1.4.3.8 Analytical Ultracentrifugation (AUG) |
|
|
14 | (1) |
|
1.4.3.9 Brunauer-Emmett-Teller (BET) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (10) |
|
2 Facile Chemical Fabrication of Designer Biofunctionalized Nanomaterials |
|
|
|
|
|
|
25 | (1) |
|
2.2 Synthesis of Nanoparticles |
|
|
26 | (1) |
|
2.3 Methods of Surface Functionalization |
|
|
27 | (1) |
|
|
27 | (2) |
|
|
27 | (1) |
|
2.4.1.1 Click-Chemistry Approach |
|
|
28 | (1) |
|
2.4.2 Noncovalent Coupling |
|
|
29 | (1) |
|
2.5 Affinity Interactions |
|
|
29 | (6) |
|
2.5.1 Poly(ethylene glycol) |
|
|
29 | (1) |
|
2.5.2 Bioconjugation Using Biomolecules |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.5.5 Proteins and Peptides |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
33 | (2) |
|
3 Functionalized Nanogold: Its Fabrication and Needs |
|
|
|
|
|
35 | (1) |
|
3.2 Fabrication of Functionalized Gold Nanostructures |
|
|
36 | (9) |
|
3.2.1 Physical Techniques of Fabrication |
|
|
36 | (1) |
|
3.2.2 Chemical Synthesis Methods for Functionalized Gold |
|
|
37 | (1) |
|
3.2.2.1 Citrate Stabilized Gold Nanoparticles |
|
|
37 | (2) |
|
3.2.2.2 Thiol-Protected Gold Nanostructures |
|
|
39 | (1) |
|
3.2.2.3 Polymer-Stabilized Gold Nanostructures |
|
|
40 | (1) |
|
3.2.2.4 Anisotropic Gold Nanostructures |
|
|
41 | (3) |
|
3.2.3 Electrochemical and Photochemical Synthesis |
|
|
44 | (1) |
|
3.3 Surface Plasmon Resonance Properties of Gold Nanostructures |
|
|
45 | (1) |
|
3.4 Application of Gold Nanostructures |
|
|
45 | (12) |
|
|
45 | (2) |
|
|
47 | (1) |
|
|
48 | (1) |
|
3.4.3.1 Plasmonic Photocatalysis |
|
|
49 | (2) |
|
|
51 | (1) |
|
|
51 | (6) |
|
4 Biogenic Synthesis of Silver Nanoparticles and Their Applications |
|
|
|
|
|
|
|
|
57 | (1) |
|
4.2 Nanomaterials and Nanoparticles |
|
|
57 | (1) |
|
|
58 | (1) |
|
4.4 Publication Scenario on Silver Nanoparticles Synthesis |
|
|
58 | (2) |
|
4.4.1 Physical Approaches |
|
|
59 | (1) |
|
4.4.2 Chemical Approaches |
|
|
59 | (1) |
|
4.4.3 Biological Synthesis of Silver Nanoparticles |
|
|
60 | (1) |
|
4.5 Microbe-Assisted Synthesis of Silver Nanoparticles |
|
|
60 | (1) |
|
4.6 Plant-Mediated Synthesis of Silver Nanoparticles |
|
|
60 | (1) |
|
4.7 Fungal-Derived Silver Nanoparticles |
|
|
60 | (1) |
|
4.8 Superiority of Biological Methods |
|
|
61 | (1) |
|
4.9 Silver Nanoparticles from White-Rot Fungi |
|
|
61 | (1) |
|
4.10 Silver Nanoparticles Synthesis |
|
|
61 | (1) |
|
4.11 Biosynthesis of Nanoparticles by Fungi |
|
|
61 | (1) |
|
4.12 Intracellular Synthesis of Nanoparticles by Fungi |
|
|
62 | (1) |
|
4.13 Extracellular Synthesis of Nanoparticles by Fungi |
|
|
62 | (1) |
|
4.14 Silver Nanoparticles from White-Rot Fungi |
|
|
62 | (1) |
|
4.15 Applications of Silver Nanoparticles |
|
|
63 | (1) |
|
4.16 Antimicrobial Activity |
|
|
64 | (1) |
|
4.17 Anticandidal Activity |
|
|
65 | (1) |
|
4.18 Application of Biogenic Silver Nanoparticles in Fabrics |
|
|
65 | (1) |
|
|
65 | (1) |
|
4.20 Nanotechnology in Wood Protection |
|
|
65 | (6) |
|
|
66 | (1) |
|
|
66 | (5) |
|
5 Nanostructure Thin Films: Synthesis and Different Applications |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 | (1) |
|
5.2 Atomic Layer Deposition of Thin Film |
|
|
71 | (1) |
|
5.3 Chemical Bath Deposition of Thin Film |
|
|
72 | (2) |
|
5.4 Electrodeposition of Thin Films |
|
|
74 | (1) |
|
5.5 Spray Pyrolysis Deposition of Thin Film |
|
|
75 | (1) |
|
5.6 Successive Ionic Layer Absorption and Reaction Deposition of Thin Film |
|
|
76 | (1) |
|
5.7 RF Sputtering Deposition of Thin Films |
|
|
77 | (6) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (5) |
|
6 Carbon Nanotubes: Preparation and Surface Modification for Multifunctional Applications |
|
|
|
|
|
|
|
|
|
83 | (2) |
|
6.2 Preparation of Carbon Nanotubes |
|
|
85 | (5) |
|
|
85 | (1) |
|
6.2.2 Laser Ablation (Also Called Laser Vaporization) |
|
|
86 | (2) |
|
6.2.3 Chemical Vapor Deposition |
|
|
88 | (2) |
|
6.3 Carbon Nanotube Modification |
|
|
90 | (9) |
|
6.3.1 Covalent Modification |
|
|
90 | (2) |
|
6.3.1.1 Sidewall and End-T Modification |
|
|
92 | (1) |
|
6.3.1.2 Defect Modification |
|
|
93 | (3) |
|
6.3.2 Non-Covalent Modification |
|
|
96 | (1) |
|
6.3.2.1 Exohedral Modification |
|
|
96 | (2) |
|
6.3.2.2 Endohedral Filling Modification |
|
|
98 | (1) |
|
|
99 | (16) |
|
6.4.1 Functional Nanocomposite Materials |
|
|
99 | (1) |
|
|
100 | (1) |
|
6.4.3 Biotechnological Applications |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (13) |
|
7 Carbon Dots: Scalable Synthesis, Physicochemical Properties, and Biomedical Application |
|
|
|
|
|
|
115 | (1) |
|
7.2 Characteristic Properties of Carbon Dots |
|
|
116 | (1) |
|
7.3 Synthesis and Application of Carbon Dots |
|
|
116 | (6) |
|
7.4 Future Prospects of Carbon Dots |
|
|
122 | (3) |
|
|
122 | (1) |
|
|
123 | (2) |
|
8 Investigations on Exotic Forms of Carbon: Nanotubes, Graphene, Fullerene, and Quantum Dots |
|
|
|
|
|
|
|
|
125 | (1) |
|
8.2 Synthesis Methods of Different Carbon Nanomaterials |
|
|
126 | (3) |
|
|
126 | (1) |
|
8.2.2 Carbon Nanotubes (CNTs) |
|
|
126 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
|
8.2.2.3 Chemical Vapor Deposition |
|
|
128 | (1) |
|
8.2.3 Preparation of Graphene |
|
|
128 | (1) |
|
|
129 | (1) |
|
8.3 Our Group's R and D Efforts towards Synthesis and Characterization of CNTs, Graphene, Fullerene, and Quantum Dots |
|
|
129 | (2) |
|
8.3.1 Synthesis of CNTs and Fullerene |
|
|
129 | (1) |
|
8.3.2 Synthesis of Graphene |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (4) |
|
|
132 | (1) |
|
|
132 | (3) |
|
9 Nanodiamonds and Other Organic Nanoparticles: Synthesis and Surface Modifications |
|
|
|
|
|
|
|
|
135 | (2) |
|
|
137 | (9) |
|
9.2.1 Structure of Nanodiamonds |
|
|
137 | (1) |
|
9.2.2 Significant Properties of Nanodiamonds |
|
|
137 | (1) |
|
9.2.2.1 Physical Properties |
|
|
138 | (1) |
|
9.2.2.2 Chemical Properties |
|
|
138 | (1) |
|
9.2.2.3 Biological Properties |
|
|
138 | (1) |
|
9.2.3 Synthesis of Nanodiamonds |
|
|
138 | (1) |
|
9.2.3.1 Detonation Synthesis |
|
|
138 | (2) |
|
9.2.3.2 Laser-Based Synthesis |
|
|
140 | (1) |
|
9.2.3.3 High-Pressure High-Temperature Synthesis |
|
|
141 | (1) |
|
9.2.3.4 Ultrasonic Cavitation |
|
|
142 | (1) |
|
9.2.3.5 Chemical Vapor Deposition |
|
|
142 | (2) |
|
9.2.4 Purification of Nanodiamonds |
|
|
144 | (1) |
|
9.2.5 Functionalized Nanodiamonds |
|
|
144 | (2) |
|
9.3 Organic Nanoparticles |
|
|
146 | (15) |
|
9.3.1 General Synthetic Approaches for the Fabrication of Organic Nanoparticles |
|
|
146 | (1) |
|
9.3.1.1 Top-Down Approaches |
|
|
146 | (1) |
|
9.3.1.2 Bottom-Up Approaches |
|
|
146 | (1) |
|
9.3.2 Synthesis of Organic Nanoparticles |
|
|
146 | (1) |
|
|
146 | (1) |
|
9.3.2.2 Vesicles and Liposomes |
|
|
147 | (1) |
|
|
148 | (3) |
|
9.3.2.4 Polymeric Nanoparticles |
|
|
151 | (1) |
|
9.3.2.5 Polymer-Based Nanostructures |
|
|
151 | (3) |
|
9.3.2.6 Lipid-Based Nanoparticles |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
156 | (5) |
|
10 Polymeric Nanoparticles: Preparation and Surface Modification |
|
|
|
|
|
|
|
|
|
|
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
10.5 Strategies to Functionalize Nanoparticles |
|
|
163 | (1) |
|
10.6 Characterizations of Polymeric Nanoparticles |
|
|
164 | (7) |
|
|
168 | (3) |
|
11 Cellulose Fibers and Nanocrystals: Preparation, Characterization, and Surface Modification |
|
|
|
|
|
|
|
|
|
|
171 | (1) |
|
11.2 Cellulose Fibers: Structure and Chemistry |
|
|
172 | (1) |
|
|
173 | (2) |
|
11.4 Cellulose Isolation Methods |
|
|
175 | (1) |
|
11.4.1 Cellulose from Lignocellulosic Materials |
|
|
175 | (1) |
|
11.4.2 Cellulose from Animals, Algae, and Bacteria |
|
|
176 | (1) |
|
11.5 Overview of Cellulose Nanofibers |
|
|
176 | (1) |
|
11.6 Cellulose Nanocrystals: Preparation Methods |
|
|
177 | (1) |
|
11.7 Characterization and Properties of Cellulose Nanocrystals |
|
|
178 | (4) |
|
11.7.1 Fourier Transform Infrared Spectroscopy (FTIR) |
|
|
179 | (1) |
|
11.7.2 X-Ray Diffraction Analysis |
|
|
179 | (1) |
|
11.7.3 Scanning Electron Microscopy (SEM) |
|
|
180 | (1) |
|
11.7.4 Transmission Electron Microscopy (TEM) |
|
|
180 | (1) |
|
11.7.5 Atomic Force Microscopy (AFM) |
|
|
181 | (1) |
|
11.7.6 Thermogravimetric Analysis (TGA) |
|
|
182 | (1) |
|
11.8 Surface Modification of Cellulose Nanocrystals |
|
|
182 | (9) |
|
11.8.1 Covalent Modification |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
11.8.2 Non-Covalent Modification |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (6) |
|
12 Protein and Peptide Nanoparticles: Preparation and Surface Modification |
|
|
|
|
|
|
|
191 | (1) |
|
12.2 Parameters for the Preparation of Protein Nanoparticles |
|
|
192 | (1) |
|
12.2.1 Protein Composition |
|
|
192 | (1) |
|
12.2.2 Protein Solubility |
|
|
193 | (1) |
|
12.2.3 Surface Properties |
|
|
193 | (1) |
|
12.2.4 Properties of Drugs |
|
|
193 | (1) |
|
12.3 Methods of Preparation |
|
|
193 | (12) |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
12.3.6 Nanoparticles Auto Assembly |
|
|
196 | (1) |
|
12.3.7 Coating Layer by Layer |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
12.3.11 Albumin-Bound Nanoparticle Preparation |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
199 | (6) |
|
13 Recent Advances in Glycolipid Biosurfactants at a Glance: Biosynthesis, Fractionation, Purification, and Distinctive Applications |
|
|
|
|
|
|
205 | (1) |
|
13.2 Biosynthesis and Physiochemical Aspects of Glycolipid BS |
|
|
206 | (4) |
|
13.2.1 Rhamnolipids (RLs) |
|
|
207 | (1) |
|
13.2.1.1 Biosynthesis of RLs |
|
|
207 | (1) |
|
13.2.2 Sophorolipids (SLs) |
|
|
207 | (1) |
|
13.2.2.1 Biosynthesis of SLs |
|
|
207 | (1) |
|
13.2.3 Trehalose Lipids (TLs) |
|
|
207 | (2) |
|
13.2.3.1 Biosynthesis of TLs |
|
|
209 | (1) |
|
13.2.4 Mannosylerythritol Lipids (MELs) |
|
|
209 | (1) |
|
13.2.4.1 Biosynthesis of MELs |
|
|
209 | (1) |
|
13.3 Microbial Glycolipid Fractionation and Purification |
|
|
210 | (1) |
|
13.4 Microbial Glycolipid Distinctive Applications |
|
|
211 | (4) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
212 | (3) |
|
14 Insight into Covalent/Non-Covalent Functionalization of Silica Nanoparticles for Neurotherapeutic and Neurodiagnostic Agents |
|
|
|
|
|
|
|
|
|
215 | (1) |
|
14.2 Common Synthesis and Characterization |
|
|
216 | (2) |
|
14.3 Covalent Attachment of Functionalities to Silica Surface |
|
|
218 | (1) |
|
14.3.1 Functionalization by Co-Condensation Method |
|
|
218 | (1) |
|
14.3.2 Functionalization by the Post-Synthesis Grafting Method |
|
|
218 | (1) |
|
14.4 Non-Covalent Chemistry for Silica Nanoparticle Functionalization |
|
|
219 | (1) |
|
14.5 Application of Functionalized Silica Nanoparticles |
|
|
219 | (6) |
|
14.5.1 Precise Neuro-Delivery |
|
|
219 | (1) |
|
14.5.2 Biosensing and Neurodiagnostics |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
222 | (3) |
|
15 Fabrication and Functionalization of Ionic Liquids |
|
|
|
|
|
|
225 | (1) |
|
15.2 Classification of Ionic Liquids |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
15.3 Properties of Ionic Liquids |
|
|
227 | (1) |
|
|
227 | (1) |
|
15.3.2 Viscosity of Ionic Liquids |
|
|
227 | (1) |
|
15.3.3 Density of Ionic Liquids |
|
|
227 | (1) |
|
15.3.4 Diffusion and Conductivity |
|
|
227 | (1) |
|
15.3.5 Solubility and Solvation in Ionic Liquids |
|
|
227 | (1) |
|
|
228 | (1) |
|
15.4 Synthesis and Functionalization of Ionic Liquids |
|
|
228 | (2) |
|
15.4.1 Synthesis of Task-Specific Ionic liquids or Functionalized Ionic Liquids |
|
|
229 | (1) |
|
15.5 Applications of Ionic Liquids |
|
|
230 | (10) |
|
15.5.1 Application in Electrochemistry |
|
|
230 | (1) |
|
15.5.2 Ionic Liquids as Ion-Sensitive Electrodes |
|
|
230 | (1) |
|
15.5.3 Voltammetric Sensors |
|
|
231 | (1) |
|
15.5.4 Ionic Liquids in Supercapacitors |
|
|
231 | (1) |
|
15.5.5 Application of Ionic Liquids in Industry |
|
|
231 | (1) |
|
|
231 | (1) |
|
15.5.5.2 Replacing Phosgene |
|
|
231 | (1) |
|
15.5.6 Ionic Liquids in Environmental Application |
|
|
232 | (1) |
|
|
232 | (1) |
|
|
232 | (8) |
|
16 Fabrication and Functionalization of Other Inorganic Nanoparticles and Nanocomposites |
|
|
|
|
|
16.1 Iron (Fe) and Iron Oxide Nanoparticles (IONPs) |
|
|
240 | (2) |
|
16.1.1 Fabrication of Magnetic Nanoparticles for Biomedical Applications |
|
|
240 | (1) |
|
16.1.2 Functionalization of Magnetic Nanoparticles |
|
|
240 | (2) |
|
16.1.3 Nanocomposites of MNPs |
|
|
242 | (1) |
|
16.2 Copper Nanoparticles |
|
|
242 | (3) |
|
16.2.1 Problems in the Fabrication of Copper Nanoparticles |
|
|
242 | (1) |
|
16.2.2 Methods of Fabrication of Copper Nanoparticles |
|
|
242 | (1) |
|
16.2.2.1 Chemical Methods (Lisiecki, 1993) |
|
|
242 | (1) |
|
16.2.2.2 Physical Methods |
|
|
242 | (1) |
|
16.2.2.3 Physicochemical Method |
|
|
242 | (1) |
|
16.2.2.4 Biological Methods |
|
|
242 | (1) |
|
16.2.3 Coating of Copper Nanoparticles with Protective Agents |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
244 | (1) |
|
16.2.6 Copper Oxide Nanoparticles (CONPs) |
|
|
244 | (1) |
|
16.2.6.1 Fabrication of CONPs |
|
|
244 | (1) |
|
16.2.6.2 CONP Nanocomposites |
|
|
245 | (1) |
|
16.3 Palladium Nanoparticles |
|
|
245 | (2) |
|
16.3.1 Fabrication of Palladium Nanoparticles |
|
|
245 | (1) |
|
|
245 | (1) |
|
16.3.1.2 Microemulsion Technique |
|
|
245 | (1) |
|
16.3.1.3 Other Methods of Fabrication |
|
|
245 | (1) |
|
16.3.2 Biological Methods |
|
|
246 | (1) |
|
|
246 | (1) |
|
16.3.3.1 Functionalization Iminophosphines |
|
|
246 | (1) |
|
16.3.3.2 Functionalization by Thiol |
|
|
246 | (1) |
|
|
246 | (1) |
|
16.4 Magnesium Nanoparticles |
|
|
247 | (1) |
|
16.4.1 Major Fabrication Methods of Magnesium Nanoparticles |
|
|
247 | (1) |
|
16.4.2 Magnesium Nanocomposites |
|
|
247 | (1) |
|
16.5 Calcium Nanoparticles |
|
|
247 | (1) |
|
16.5.1 Fabrication of Calcium Nanoparticles |
|
|
247 | (1) |
|
16.5.1.1 Calcium Dihydrogen Phosphate Nanoparticles |
|
|
247 | (1) |
|
16.5.1.2 Calcium Carbonate Nanoparticles |
|
|
248 | (1) |
|
16.5.1.3 Pharmaceutical Applications |
|
|
248 | (1) |
|
|
248 | (1) |
|
16.6 Iridium and Iridium Oxide Nanoparticles |
|
|
248 | (1) |
|
16.7 Titanium Dioxide Nanoparticles (Titania, TONPs) |
|
|
249 | (1) |
|
16.7.1 Fabrication of TONPs |
|
|
249 | (1) |
|
16.7.2 Functionalization of TONPs |
|
|
249 | (1) |
|
|
249 | (1) |
|
16.8 Tin Oxide Nanoparticles |
|
|
250 | (1) |
|
16.8.1 Fabricating Methods of Tin Oxide Nanoparticles |
|
|
250 | (1) |
|
16.9 Selenium Nanoparticles (SeNPs) |
|
|
250 | (1) |
|
16.9.1 Uniqueness of Selenium and Its Nanoparticles |
|
|
250 | (1) |
|
16.9.2 Fabrication of SeNPs |
|
|
250 | (1) |
|
16.9.3 Biological Synthesis of SeNPs |
|
|
251 | (1) |
|
16.9.4 Applications of Functionalized SeNPs in Cancer Therapy |
|
|
251 | (1) |
|
16.9.5 Other Applications of Functionalized SeNPs |
|
|
251 | (1) |
|
16.10 Zirconium Oxide (ZrO2) Nanoparticles |
|
|
251 | (2) |
|
|
251 | (1) |
|
16.10.2 Functionalization |
|
|
252 | (1) |
|
16.10.2.1 Stability Aspect of ZrO2 Nanoparticles |
|
|
252 | (1) |
|
|
252 | (1) |
|
16.11 Zinc (Zn) and Zinc Oxide (ZnO) Nanoparticles (Zinc Oxide Nanoparticles) |
|
|
253 | (16) |
|
16.11.1 Fabrication Methods |
|
|
253 | (1) |
|
16.11.2 Biological Synthesis |
|
|
253 | (1) |
|
16.11.3 Functionalization |
|
|
253 | (2) |
|
|
255 | (14) |
|
17 Clay/Non-Ionic Surfactant Hybrid Nanocomposites |
|
|
|
|
|
|
|
|
|
269 | (1) |
|
|
270 | (1) |
|
17.3 Surfactants in Water |
|
|
271 | (1) |
|
17.4 Block Copolymers in Water |
|
|
271 | (1) |
|
17.5 Surfactant/Clay Mixtures |
|
|
272 | (7) |
|
|
274 | (1) |
|
|
274 | (5) |
|
18 Microorganism-Mediated Functionalization of Nanoparticles for Different Applications |
|
|
|
Maheshkumar Prakash Patil |
|
|
|
|
279 | (2) |
|
18.1.1 Nanoparticle Synthesis by Different Methods |
|
|
280 | (1) |
|
18.1.2 Nanoparticles Synthesis Using Microorganisms |
|
|
280 | (1) |
|
18.2 Microbe-Mediated Synthesis of Nanoparticles |
|
|
281 | (5) |
|
18.2.1 Mechanism of Nanoparticle Formation |
|
|
281 | (1) |
|
18.2.1.1 Intracellular Synthesis |
|
|
281 | (2) |
|
18.2.1.2 Extracellular Synthesis |
|
|
283 | (1) |
|
18.2.2 Bacteria in Synthesis of Nanoparticles |
|
|
283 | (1) |
|
18.2.3 Cyanobacteria and Actinomycetes in the Synthesis of Nanoparticles |
|
|
284 | (1) |
|
18.2.4 Yeast and Fungi in the Synthesis of Nanoparticles |
|
|
284 | (1) |
|
18.2.5 Algae in the Synthesis of Nanoparticles |
|
|
285 | (1) |
|
18.3 Effects of Different Parameters in the Synthesis of Nanoparticles |
|
|
286 | (1) |
|
18.4 Characterization of Nanoparticles |
|
|
287 | (1) |
|
18.4.1 UV-Visible Spectroscopy (UV-Vis) |
|
|
287 | (1) |
|
18.4.2 Scanning Electron Microscopy (SEM) |
|
|
287 | (1) |
|
18.4.3 Transmission Electron Microscopy (TEM) |
|
|
287 | (1) |
|
18.4.4 Dynamic Light Scattering (DLS) |
|
|
287 | (1) |
|
18.4.5 Energy-Dispersive X-Ray Spectroscopy (EDXS) |
|
|
287 | (1) |
|
18.4.6 X-Ray Diffraction (XRD) |
|
|
287 | (1) |
|
18.4.7 Fourier Transform Infra-Red Spectroscopy (FT-IR) |
|
|
287 | (1) |
|
18.5 Applications of Microbe-Mediated Nanoparticles |
|
|
288 | (4) |
|
18.5.1 Antibacterial Activity of Nanoparticles |
|
|
288 | (1) |
|
18.5.2 Antifungal Activities of Nanoparticles |
|
|
289 | (1) |
|
18.5.3 Anticancer Activity of Nanoparticles |
|
|
289 | (1) |
|
18.5.4 Nanoparticles in Drug Delivery |
|
|
290 | (1) |
|
18.5.5 Nanoparticles in the Food Industry |
|
|
291 | (1) |
|
|
291 | (1) |
|
|
291 | (1) |
|
18.5.8 Agricultural Applications |
|
|
291 | (1) |
|
18.5.9 Bioremediation Appl ications |
|
|
291 | (1) |
|
18.6 Challenges and Limitations |
|
|
292 | (7) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
292 | (7) |
|
19 Nanotechnology in Molecular Targeting, Drug Delivery, and Immobilization of Enzyme(s) |
|
|
|
|
|
|
|
|
|
299 | (1) |
|
19.2 Different Classes of NPs |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
19.2.4 Carbon Nanomaterials |
|
|
301 | (1) |
|
19.2.5 Quantum Dots (QDs) |
|
|
301 | (1) |
|
19.3 Applications of Nanoparticles |
|
|
301 | |
|
19.3.1 NPs as Immobilization Matrices |
|
|
302 | (1) |
|
19.3.2 Role of NPs in Medicine |
|
|
303 | (1) |
|
19.3.3 Nanoparticles in Drug Delivery Systems |
|
|
303 | (1) |
|
19.3.4 NPs-Targeting Tumor Sites |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
304 | |