Atnaujinkite slapukų nuostatas

El. knyga: Fundamental Mass Transfer Concepts in Engineering Applications

(Middle East Technical University, Dept. of Chemical Engineering, Ankara, Turkey)
  • Formatas: 458 pages
  • Išleidimo metai: 03-Jun-2019
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351374620
  • Formatas: 458 pages
  • Išleidimo metai: 03-Jun-2019
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351374620

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Fundamental Mass Transfer Concepts in Engineering Applications provides the basic principles of mass transfer to upper undergraduate and graduate students from different disciplines. This book outlines foundational material and equips students with sufficient mathematical skills to tackle various engineering problems with confidence. It covers mass transfer in both binary and multicomponent systems and integrates the use of Mathcad® for solving problems. This textbook is an ideal resource for a one-semester course.

Key Features











The concepts are explained with the utmost clarity in simple and elegant language





Presents theory followed by a variety of practical, fully-worked example problems





Includes a summary of the mathematics necessary for mass transfer calculations in an appendix





Provides ancillary Mathcad® subroutines





Includes end-of-chapter problems and a solutions manual for adopting instructors
Preface xv
Author xvii
Notation xix
Chapter 1 Introduction 1(8)
1.1 Basic Concepts
1(1)
1.2 Definitions
2(1)
1.2.1 Steady-State
2(1)
1.2.2 Uniform
2(1)
1.2.3 Equilibrium
2(1)
1.2.4 Flux
3(1)
1.3 Molecular Flux
3(3)
1.3.1 Newton's Law of Viscosity
3(1)
1.3.2 Fourier's Law of Heat Conduction
4(1)
1.3.3 Fick's First Law of Diffusion
5(1)
1.3.4 Dimensionless Numbers
5(1)
1.4 Convective Flux
6(1)
1.5 Total Flux
7(1)
1.6 Transfer Coefficients
7(1)
1.6.1 Dimensionless Numbers
8(1)
Reference
8(1)
Chapter 2 Conservation of Chemical Species 9(58)
2.1 Definitions
9(18)
2.1.1 Concentrations
9(2)
2.1.2 Velocities
11(2)
2.1.3 Mass and Molar Fluxes
13(5)
2.1.4 Diffusive Mass/Molar Fluxes in Different Reference Velocity Frames
18(4)
2.1.5 Diffusive Flux Transformations
22(5)
2.2 The Species Continuity Equation
27(4)
2.2.1 Homogeneous Reaction Rate Expression
29(2)
2.2.2 Heterogeneous Reaction Rate Expression
31(1)
2.3 The Species Continuity Equation in Terms of Fluxes
31(3)
2.3.1 Mass Basis
31(1)
2.3.2 Molar Basis
32(2)
2.4 Governing Equations for a Binary System
34(6)
2.4.1 Fick's First Law of Diffusion
35(2)
2.4.2 Total Mass/Molar Flux Expressions
37(1)
2.4.3 Various Forms of the Species Continuity Equation
37(3)
2.4.4 Fick's Second Law of Diffusion
40(1)
2.5 Driving Forces for Diffusion
40(5)
2.5.1 Thermodynamics Preliminaries
41(1)
2.5.2 Two-Bulb Diffusion Experiment
42(2)
2.5.3 Other Driving Forces of Mass Transfer
44(1)
2.6 Estimation of Diffusion Coefficients
45(9)
2.6.1 Diffusion Coefficients for Gases
46(4)
2.6.1.1 Chapman-Enskog theory
46(3)
2.6.1.2 Fuller-Schettler-Giddings correlation
49(1)
2.6.2 Diffusion Coefficients for Liquids
50(4)
2.6.2.1 Stokes-Einstein equation
50(2)
2.6.2.2 Wilke-Chang equation
52(1)
2.6.2.3 Modified Tyn-Calus equation
52(2)
2.7 Boundary Conditions at Phase Interfaces
54(11)
2.7.1 Vapor-Liquid Interface
54(3)
2.7.2 Solid-Fluid Interface
57(2)
2.7.3 Liquid-Liquid Interface
59(1)
2.7.4 Other Boundary Conditions
59(1)
2.7.5 Jump Boundary Condition
60(5)
References
65(2)
Chapter 3 Foundations of Diffusion in Multicomponent Mixtures 67(42)
3.1 Generalized Fick's Law
67(8)
3.1.1 Diffusive Flux Expressions
67(5)
3.1.2 Transformation of Fick Diffusion Coefficients
72(1)
3.1.3 Properties of Fick Diffusion Coefficient Matrices
73(2)
3.2 MS Equations
75(3)
3.2.1 Isothermal Diffusion in the Absence of External Body Forces
76(2)
3.3 Calculation of the Thermodynamic Factor
78(8)
3.3.1 Thermodynamic Factor Based on the Activity Coefficient
78(6)
3.3.2 Thermodynamic Factor Based on the Fugacity Coefficient
84(2)
3.4 MS Equations in the form of Generalized Fick Equations
86(8)
3.4.1 Binary Mixture
87(2)
3.4.2 Ternary Mixture
89(4)
3.4.3 Quaternary Mixture
93(1)
3.5 Prediction of Diffusion Coefficients
94(5)
3.5.1 Vignes Equation
94(3)
3.5.2 Darken Equation
97(2)
3.6 Governing Equations for Dilute Gas Mixtures
99(8)
3.6.1 Special Case for Nk = 0 (i not equal to k)
99(8)
References
107(2)
Chapter 4 Mass Transfer in Binary Systems without Bulk Flow: Steady-State Examples 109(52)
4.1 Diffusion of Fluids Through Solids and/or Membranes
109(12)
4.1.1 Diffusion in Cartesian Coordinates
109(6)
4.1.2 Diffusion in Cylindrical Coordinates
115(3)
4.1.3 Diffusion in Spherical Coordinates
118(3)
4.2 Equimolar Counterdiffusion
121(3)
4.2.1 Equimolar Counterdiffusion in a Tapered Conical Duct
122(2)
4.3 Evaporation of a Liquid in a Capillary Tube
124(3)
4.3.1 Limiting Case for Small Values of yAO
126(1)
4.3.2 Velocities
126(1)
4.3.3 Total Molar Flux of Species B
127(1)
4.4 Diffusion Through a Stagnant Liquid
127(4)
4.4.1 Analysis Based on the Molar-Average Velocity
127(1)
4.4.2 Analysis Based on the Volume-Average Velocity
128(1)
4.4.3 Velocities
129(2)
4.5 Diffusion with a Heterogeneous Reaction
131(3)
4.5.1 Velocities
133(1)
4.6 Diffusion and Reaction in a Cylindrical Catalyst Pore
134(5)
4.6.1 Effectiveness Factor
138(1)
4.7 Diffusion and Reaction In a Spherical Catalyst
139(3)
4.7.1 Effectiveness Factor
140(2)
4.8 Diffusion in a Liquid with a Homogeneous Reaction
142(8)
4.9 Diffusion with Heterogeneous and Homogeneous Reactions
150(9)
References
159(2)
Chapter 5 Mass Transfer in Binary Systems without Bulk Flow: Pseudosteady-State Examples 161(32)
5.1 Pseudosteady-State Approximation
161(1)
5.2 Mass Transfer Coefficient
162(4)
5.2.1 Physical Interpretation of the Mass Transfer Coefficient
163(1)
5.2.2 Other Definitions of Mass Transfer Coefficients
164(1)
5.2.3 Two-Film Theory
165(1)
5.3 Mass Transfer Correlations
166(7)
5.3.1 Flow over a Flat Plate
167(1)
5.3.2 Flow over a Single Sphere
167(2)
5.3.3 Flow over a Single Cylinder
169(1)
5.3.4 Flow in Circular Pipes
169(1)
5.3.5 Flow in Packed Beds
170(1)
5.3.6 Solid-Liquid Suspensions in Agitated Tanks
171(1)
5.3.7 Hollow Fiber Geometries
172(1)
5.4 Diaphragm Cell
173(1)
5.4.1 Validity of the Pseudosteady-State Approximation
174(1)
5.5 Stefan Diffusion Problem
174(3)
5.5.1 Simplification for Small Values of yAO
176(1)
5.5.2 Validity of the Pseudosteady-State Approximation
176(1)
5.5.3 Application of the Jump Species Continuity Equation
176(1)
5.6 Evaporation of a Liquid Droplet
177(2)
5.6.1 Simplification for Small Values of yeqA
178(1)
5.6.2 Validity of the Pseudosteady-State Approximation
178(1)
5.7 Sublimation of a Naphthalene Sphere
179(1)
5.7.1 Stagnant Air
179(1)
5.7.2 Air Moves at a Certain Velocity
179(1)
5.8 Shrinking Particle Model
180(2)
5.9 Shrinking Core Model
182(9)
5.9.1 Rectangular Geometry
182(2)
5.9.2 Spherical Geometry
184(7)
References
191(2)
Chapter 6 Mass Transfer in Binary Systems without Bulk Flow: Unsteady-State Examples 193(48)
6.1 Governing Equations
193(1)
6.2 Diffusion into a Rectangular Slab
194(8)
6.2.1 Calculation of the Molar Flux - An Alternative Approach
196(2)
6.2.2 Solution for Short Times
198(2)
6.2.3 Diffusion into a Semi-Infinite Domain
200(2)
6.2.4 Solution for Long Times
202(1)
6.3 Drug Release from a Spherical Matrix
202(4)
6.3.1 Investigation of the Limiting Cases
205(1)
6.4 Diffusion and Reaction in a Polymer Microsphere
206(4)
6.5 Drug Release from a Cylindrical Matrix
210(3)
6.6 Diffusion into a Slab from a Limited Volume of Solution
213(3)
6.7 Loschmidt Diffusion Cell
216(3)
6.8 Diffusion from Instantaneous Sources
219(20)
6.8.1 Diffusion from a Plane Source
219(3)
6.8.2 Diffusion from a Line Source
222(1)
6.8.3 Diffusion from a Point Source
223(16)
References
239(2)
Chapter 7 Mass Transfer in Binary Systems with Bulk Flow 241(48)
7.1 Governing Equations
241(1)
7.2 Forced Convection Mass Transfer in a Pipe
242(7)
7.2.1 Asymptotic Solution for Large Values of z
246(1)
7.2.2 Asymptotic Solution for Small Values of z
247(2)
7.3 More on the Forced Convection Mass Transfer in a Pipe
249(5)
7.3.1 Sherwood Number for Constant Wall Concentration
250(2)
7.3.2 Sherwood Number for Constant Wall Mass Flux
252(2)
7.4 Convective Mass Transport with a Wall Reaction in a Pipe
254(3)
7.5 Diffusion into a Falling Liquid Film
257(5)
7.5.1 Expression for the Sherwood Number
258(1)
7.5.2 Long Contact Times
259(1)
7.5.3 Short Contact Times
260(2)
7.6 Stefan Diffusion Problem Revisited: Unsteady-State Case
262(4)
7.7 Stefan Tube at Supercritical Conditions
266(5)
7.7.1 Limiting Case When Ω = 0
270(1)
7.8 Diffusion from Instantaneous Sources
271(2)
7.8.1 Diffusion from a Plane Source
271(1)
7.8.2 Diffusion from a Line Source
272(1)
7.8.3 Diffusion from a Point Source
273(1)
7.9 Convection and Diffusion in a Semi-Infinite Medium
273(2)
7.10 Development of Taylor-Aris Theory
275(11)
References
286(3)
Chapter 8 Mass Transfer in Multicomponent Mixtures 289(40)
8.1 Two-Bulb Diffusion Experiment by Duncan and Toor
289(4)
8.2 MS Equations
293(20)
8.2.1 Steady-State Mass Transfer in Ternary Gas Mixtures
294(17)
8.2.2 Two-Bulb Diffusion Experiment Revisited: Unsteady-State Case
311(2)
8.3 MS Equations for Coupled Driving Forces
313(13)
8.3.1 Diffusion Induced by a Temperature Gradient (Thermal Diffusion)
316(1)
8.3.2 Diffusion Induced by a Pressure Gradient (Pressure Diffusion)
317(1)
8.3.3 Diffusion Induced by an Electrostatic Potential Gradient
318(8)
References
326(3)
Chapter 9 Approximate Solution of the Species Continuity Equation 329(18)
9.1 Two-Point Hermite Expansion
329(1)
9.2 Drug Release from a Slab
330(6)
9.2.1 Analytical Solution
333(1)
9.2.2 Approximate Solution by Area Averaging
334(1)
9.2.3 Comparison of Results
335(1)
9.2.4 Limiting Case for Equal Bulk Concentrations
336(1)
9.3 Diffusion into a Slab from a Limited Volume of Solution
336(3)
9.3.1 Analytical Solution
336(1)
9.3.2 Approximate Solution by Area Averaging
337(2)
9.3.3 Comparison of Results
339(1)
9.4 Convective Mass Transport between two Parallel Plates with a Wall Reaction
339(6)
9.4.1 Analytical Solution
341(2)
9.4.2 Approximate Solution by Area Averaging
343(2)
9.4.3 Comparison of Results
345(1)
References
345(2)
Appendix A Vector and Tensor Algebra 347(12)
A.1 The Operations on Vectors
347(2)
A.1.1 Addition
347(1)
A.1.2 Scalar Multiplication
348(1)
A.1.3 Scalar (or Dot) Product
348(1)
A.1.4 Vector (or Cross) Product
349(1)
A.2 Basis and Basis Vectors
349(1)
A.3 Summation Convention
350(1)
A.4 Second-Order Tensors
351(2)
A.4.1 Trace of a Tensor
352(1)
A.4.2 Invariants of a Tensor
353(1)
A.5 Vector and Tensor Differential Operations
353(2)
A.5.1 Gradient of a Scalar Field
353(1)
A.5.2 Divergence of a Vector Field
353(1)
A.5.3 Curl of a Vector Field
354(1)
A.5.4 Gradient of a Vector Field
354(1)
A.5.5 Laplacian of a Scalar Field
354(1)
A.5.6 Some Useful Identities
355(1)
A.6 Vector and Tensor Algebra in Curvilinear Coordinates
355(3)
A.6.1 Dot and Cross Product Operations
357(1)
A.6.2 Differential Operations
357(1)
A.7 Vector and Tensor Integral Theorems
358(1)
A.7.1 Green's Transformation
358(1)
A.7.2 The Leibniz Formula
358(1)
Appendix B Order of Magnitude (Scale) Analysis 359(4)
References
361(2)
Appendix C Matrices 363(8)
C.1 Basic Matrix Operations
363(1)
C.2 Determinants
364(1)
C.2.1 Some Properties of Determinants
365(1)
C.3 Types of Matrices
365(2)
C.3.1 Transpose of a Matrix
365(1)
C.3.2 Unit Matrix
366(1)
C.3.3 Symmetric and Skew-Symmetric Matrices
366(1)
C.3.4 Singular Matrix
366(1)
C.3.5 Trace of a Matrix
366(1)
C.3.6 Inverse of a Matrix
366(1)
C.4 Eigenvalues and Eigenvectors of a Matrix
367(1)
C.4.1 Some Properties of Eigenvalues and Eigenvectors
368(1)
C.5 Solution of Algebraic Equations - Cramer's Rule
368(1)
C.6 Matrix Operations Using Mathcad
369(1)
Reference
370(1)
Appendix D Ordinary Differential Equations 371(8)
D.1 First-Order ODEs
371(2)
D.1.1 Separable Equation
371(1)
D.1.2 Exact Equation
371(1)
D.1.3 Homogeneous Equation
372(1)
D.1.4 Bernoulli Equation
372(1)
D.2 Second-Order ODEs
373(2)
D.2.1 Solution of a Homogeneous Equation
373(1)
D.2.2 Solution of a Nonhomogenous Equation
373(1)
D.2.3 Bessel's Equation
374(1)
D.3 Special Cases of Second-Order Differential Equations
375(3)
D.3.1 Cartesian Coordinate System
375(1)
D.3.2 Cylindrical Coordinate System
376(1)
D.3.3 Spherical Coordinate System
377(1)
Reference
378(1)
Appendix E Partial Differential Equations 379(38)
E.1 Preliminaries
379(5)
E.1.1 Classification of Partial Differential Equations
379(1)
E.1.2 Orthogonal Functions
379(1)
E.1.3 Second-Order Self-Adjoint Differential Equations
380(1)
E.1.4 Sturm-Liouville Problem
381(1)
E.1.5 Fourier Series
382(2)
E.2 Analytical Solution of PDEs
384(25)
E.2.1 Separation of Variables
385(10)
E.2.2 Similarity Solution
395(2)
E.2.3 The Laplace Transform Technique
397(10)
E.2.4 The Fourier Transform Technique
407(2)
E.3 Duhamel's Theorem
409(1)
E.4 Solution of PDEs by Mathcad
410(6)
E.4.1 Determination of Eigenvalues
410(1)
E.4.2 Numerical Solution of Parabolic PDEs
411(5)
References
416(1)
Appendix F Critical Constants and Acentric Factors 417(4)
Appendix G Physical Properties of Water 421(2)
Appendix H Mathcad Subroutines 423(4)
H.1 Multicomponent - Wilson
423(1)
H.2 Multicomponent - NRTL
423(1)
H.3 Root
423(1)
H.4 Mixture
423(4)
Appendix I Suggested Books for Further Reading 427(2)
Appendix J Constants and Conversion Factors 429(2)
J.1 Physical Constants
429(1)
J.2 Conversion Factors
429(2)
Index 431
Professor Ismail Tosun received his BS and MS degrees from the Middle East Technical University (METU), and a PhD degree from the University of Akron, Ohio. After spending a year as a post-doctoral fellow at the University of Akron and completing his military service in Ankara, he started his academic career as an assistant professor at the METU Chemical Engineering Department in 1981. He was promoted to Associate Professorship in 1984 and to full Professorship in 1989. As a Fulbright Scholar and a Visiting Professor, Prof. Tosun was in the United States from 1987 to 1989. From 1990 to 1993, he was the Assistant-Dean of the Graduate School at METU. He then acted as the Dean of Graduate School until 1997. In January of 1997, Prof. Tosun was appointed to the Council of Higher Education (YOK), which acts as the National Board of Trustees. After completing his term of four years as the Vice-President, he returned to his academic career at METU in January of 2001. His research and teaching interests are mathematical modeling, solid-liquid separation processes, transport phenomena, and thermodynamics. He is the author or coauthor of over sixty publications.