Atnaujinkite slapukų nuostatas

El. knyga: Fundamentals of Algebraic Topology

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 270
  • Išleidimo metai: 31-Oct-2014
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781493918447
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 270
  • Išleidimo metai: 31-Oct-2014
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781493918447
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and results are stated in a form that emphasizes practical use over maximal generality. Moreover, to better reveal the logical structure of the subject, the separate roles of algebra and topology are illuminated.

Assuming a background in point-set topology, Fundamentals of Algebraic Topology covers the canon of a first-year graduate course in algebraic topology: the fundamental group and covering spaces, homology and cohomology, CW complexes and manifolds, and a short introduction to homotopy theory. Readers wishing to deepen their knowledge of algebraic topology beyond the fundamentals are guided by a short but carefully annotated bibliography.

Recenzijos

Weinberg front-loads the Eilenberg-Steenrod axioms, thus rendering singular homology, where most authors start, merely an important example that emerges well on in the text. Certain readers either primarily interested in making calculations or in extraordinary theories such as K-theories or (co)bordism will appreciate this emphasis. Summing Up: Recommended. Upper-division undergraduates and above. (D. V. Feldman, Choice, Vol. 52 (10), June, 2015)

The fundamental group, covering spaces, a heavy dose of homology theory, applications to manifolds, and the higher homotopy groups is what the book is all about. The exposition is exquisite, making reading the book very enjoyable. The book certainly has its place among the existing literature, as it offers something different from its peers. All in all, what the book does it does very well, and it achieves a lot. Certainly a recommended read. (Ittay Weiss, MAA Reviews, March, 2015)

This new booklet by the renowned textbook author Steven H. Weintraub is to serve as a quick guide to the fundamental concepts and results of classical algebraic topology. the present book is certainly a highly useful and valuable companion for a first-year graduate course in algebraic topology, as well for ambitious students as for instructors. (Werner Kleinert, zbMATH, Vol. 1305, 2015)

Preface vii
1 The Basics
1(4)
1.1 Background
1(1)
1.2 Homotopy
2(2)
1.3 Exercises
4(1)
2 The Fundamental Group
5(18)
2.1 Definition and Basic Properties
5(3)
2.2 Covering Spaces
8(5)
2.3 van Kampen's Theorem and Applications
13(2)
2.4 Applications to Free Groups
15(4)
2.5 Free Homotopy Classes
19(1)
2.6 Some "Bad" Spaces
20(1)
2.7 Exercises
21(2)
3 Generalized Homology Theory
23(12)
3.1 The Eilenberg-Steenrod Axioms
23(2)
3.2 Consequences of the Axioms
25(5)
3.3 Axioms for Cohomology and Their Consequences
30(2)
3.4 Exercises
32(3)
4 Ordinary Homology Theory
35(20)
4.1 Homology Groups of Spheres, and Some Classical Applications
35(3)
4.2 CW-Complexes and Cellular Homology
38(11)
4.3 Real and Complex Projective Spaces
49(3)
4.4 Exercises
52(3)
5 Singular Homology Theory
55(40)
5.1 Development of the Theory
55(6)
5.2 The Geometric Meaning of H0 and H1
61(5)
5.3 Homology with Coefficients
66(3)
5.4 The Kunneth Formula
69(3)
5.5 Cohomology
72(8)
5.6 Cup and Cap Products
80(9)
5.7 Some Applications of the Cup Product
89(3)
5.8 Exercises
92(3)
6 Manifolds
95(32)
6.1 Definition and Examples
95(2)
6.2 Orientations
97(10)
6.3 Examples of Orientability and Nonorientability
107(5)
6.4 Poincare and Lefschetz Duality and Applications
112(13)
6.5 Exercises
125(2)
7 Homotopy Theory
127(12)
7.1 Definitions and Basic Properties
127(4)
7.2 Further Results
131(6)
7.3 Exercises
137(2)
A Elementary Homological Algebra
139(12)
A.1 Modules and Exact Sequences
139(3)
A.2 Chain Complexes
142(5)
A.3 Tensor Product, Horn, Tor, and Ext
147(4)
B Bilinear Forms
151(8)
B.1 Definitions
151(2)
B.2 Classification Theorems
153(2)
C Categories and Functors
155(4)
C.1 Categories
155(1)
C.2 Functors
156(3)
Bibliography 159(2)
Index 161
Steven H. Weintraub is Professor of Mathematics at Lehigh University. He is the author of Galois Theory and Algebra: An Approach via Module Theory (with W. A. Adkins).