Atnaujinkite slapukų nuostatas

El. knyga: Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends

(Professor of Physics, University of Illinois and President, NanoSi Advanced Technologies, Inc, USA)
  • Formatas: EPUB+DRM
  • Serija: Micro & Nano Technologies
  • Išleidimo metai: 29-Jun-2018
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323480581
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Micro & Nano Technologies
  • Išleidimo metai: 29-Jun-2018
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323480581
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery).

Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications.

  • Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon
  • Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding
  • Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers
Preface xv
1 Atom-by-Atom Manufacturing: The Birth of Nanotechnology
1.1 Feynman's Vision
1(1)
1.2 Feynman Challenge Funding
2(2)
1.3 Drawbacks of Atom-by-atom (ABA)
4(1)
1.4 Parallel Manufacturing Solution by K. Eric Drexler
4(3)
References
6(1)
2 Seeing and Detecting Atoms in a Gas Using Light
2.1 Picking Stationary Atoms with Laser Light
7(10)
2.2 Counting Sodium Atoms Using Resonance Light (Fluorescence) Spectroscopy
17(1)
2.3 Detection of Single Atoms Using Light-induced Electron Resonance Ionization
18(7)
2.3.1 Stopping/Cooling Atoms
22(1)
2.3.2 Atom-by-Atom Fabrication
22(1)
References
22(3)
3 Trapping and Stopping/Cooling of Atoms, Particles, and Bio-components Using Laser Light
3.1 Solar and Laser Sails
25(5)
3.2 Stopping Atoms: Atom Trap (Magneto-Optical Trap)
30(7)
3.3 Trapping Nano-to Micro-Particles (Push-Pull Forces)
37(11)
3.4 Trapping of Ultrasmall Nanoparticles: Nano (Trap) Tweezers
48(6)
3.4.1 Higher NA
48(1)
3.4.2 Plasmonic (Metal) Nanolenses
48(6)
3.5 Thermal Trapping of Particles
54(5)
References
56(3)
4 Seeing Atoms and Clusters on Surfaces
4.1 Seeing Nanoparticles and What's Inside with Free Electrons
59(5)
4.1.1 Transmission Electron Microscope (TEM)
59(5)
4.2 Seeing Atoms, Molecules, and Nanoparticles on Surfaces Using Tunneling Electrons (STM Imaging)
64(6)
4.2.1 Nanoparticles
68(1)
4.2.2 Spectroscopy Using Tunneling Scanning (STS): I-V Spectroscopy
68(2)
4.3 Mechanical Atomic Imaging (Atomic Force Microscope-AFM)
70(6)
4.3.1 Imaging Nanoparticles
74(2)
4.4 Unveiling the Surface Topography: the Oscillating Cantilever
76(1)
4.5 Variety of Tip-Based Imaging
77(5)
4.5.1 Conductive AFM (CAFM)
77(1)
4.5.2 AFM Tip With Single Molecule Apex
77(1)
4.5.3 Magnetic Force Microscopy
78(1)
4.5.4 Near-Field Scanning Optical Microscopy (NSOM)
79(1)
4.5.5 Scanning Electrochemical Microscopy (SECM) Ultra-Microelectrode (UME) Tip
80(2)
4.6 Tip Preparation and Effect of Shape
82(7)
4.6.1 Metal Tips for STM
82(1)
4.6.2 Platinum-Iridium or Gold Tips
83(1)
4.6.3 Multiple Whisker Tips
83(1)
4.6.4 Solid Carbon Cone Tapping Mode
83(1)
4.6.5 Metal-Coated Silicon AFM Tips
83(2)
4.6.6 Carbon Nanotube Tips
85(1)
References
85(4)
5 Manipulation and Patterning of Surfaces (Nanolithography)
5.1 Standard Visible and Near UV Photolithography
89(1)
5.2 Current Photolithography (Shorter Wavelength)
89(4)
5.2.1 Wavelength-Independent Resolution
90(1)
5.2.2 Immersion Lithography
91(2)
5.3 New Generation of Lithography (NGL)
93(6)
5.3.1 Extreme Ultraviolet Lithography (EUV-Lithography)
94(1)
5.3.2 X-Ray Lithography
95(1)
5.3.3 Electron-Beam Lithography
95(3)
5.3.4 Focused Ion Beam (FIB) Lithography
98(1)
5.4 Variety of Non-Conventional Lithography
99(7)
5.4.1 Nanoimprint (Mold) Lithography
99(1)
5.4.2 Plasmonic-Assisted Lithography
100(4)
5.4.3 Laser Interference Lithography
104(1)
5.4.4 Nanosphere Shadow Lithography
104(2)
5.4.5 Resists
106(1)
5.5 Scanning Probe Nanofabrication (Tip-Based Fabrication)
106(23)
5.5.1 Tip-Based Devices
107(1)
5.5.2 STM Fabrication
107(3)
5.5.3 Fabrication Mechanisms for STM
110(11)
5.5.4 Modification of Resist
121(3)
5.5.5 Nanofabrication With Atomic Force Tip (Conducting and Non-Conducting)
124(5)
5.6 Chemistry-Based Nanofabrication
129(1)
5.6.1 Local/Anodic Oxidation/Nanolithography (LON)
129(1)
5.7 Local Electro Etching
130(3)
5.7.1 HF Silicon Etching
130(3)
5.8 Dip Pen Lithograph with AFM
133(1)
5.9 Wear and Tear and Contamination of AFM Tips
134(5)
5.9.1 Imaging
134(1)
5.9.2 Fabrication
134(1)
5.9.3 Calibration
134(1)
References
135(4)
6 Particle-by-Particle Nanotechnology
6.1 Schemes of Building Nanocomponents
139(3)
6.2 Popular Nanocomponents
142(4)
6.2.1 Carbon Nanocomponents
142(1)
6.2.2 Titanium Oxide
143(1)
6.2.3 Metal Nanoparticle
143(1)
6.2.4 Semiconductor Nanoparticles (Direct Material)
144(1)
6.2.5 Silicon (Indirect Material)
144(2)
6.3 Discovery of Novel Characteristics of Nanocomponents and Why
146(1)
6.3.1 Surface Effects
146(1)
6.3.2 Fundamental Characteristics
147(1)
6.3.3 Material Properties
147(1)
6.3.4 Derivative Functionalities
147(1)
6.4 Clinton/Bush and Drexler and Fate of Nanotechnology
147(3)
6.4.1 Nanotechnology US Initiatives
148(2)
6.5 Present-Day Nanotechnology
150(3)
References
150(3)
7 Characterization and Simulation Technologies of Nanomaterial
7.1 Size Distribution: TEM, SEM, STM, AFM, DLS, Raman
153(2)
7.1.1 Scanning Tunneling Microscope (STM)
153(1)
7.1.2 Atomic Force Microscope
153(1)
7.1.3 Transmission Electron Microscope
154(1)
7.1.4 Dynamic Light Scattering Technology
154(1)
7.2 Material Composition: XPS, AES, EDX, NMR, Raman, FTIR
155(2)
7.2.1 Nuclear Magnetic Resonance (NMR)
156(1)
7.3 Structural Analysis (Diffraction)
157(2)
7.3.1 X-Ray Diffraction (XRD)
157(1)
7.3.2 Nanomaterial
158(1)
7.3.3 Selected Area Electron Diffraction (SAED)
158(1)
7.4 Nanosolid Thickness
159(2)
7.4.1 Ellipsometry
159(1)
7.4.2 Profilometry
160(1)
7.5 Optical, Thermal, and Electrical
161(2)
7.5.1 Capacitance-Voltage (C-V, CV) Characteristics
162(1)
7.5.2 Current-Voltage (I-V) Characteristic
163(1)
7.5.3 Electro- and Cathodoluminescence
163(1)
7.5.4 Thermoluminescence
163(1)
7.6 Theoretical Simulation
163(6)
7.6.1 DFT Methods
164(1)
7.6.2 Quantum Monte Carlo
165(1)
7.6.3 Variation Monte Carlo
166(1)
7.6.4 Diffusion Monte Carlo
166(1)
References
166(3)
8 Nanometal
8.1 Nature of Interaction of Light With Metal
169(4)
8.1.1 Plasma Model
169(4)
8.2 Miniaturized Metal: Sub-Wavelength Concentration of Light
173(5)
8.2.1 Bulk Material (3D)
174(1)
8.2.2 Thin Film or Sheet (2D)
174(1)
8.2.3 Nanowire(1D)
175(1)
8.2.4 Nanoparticles/Dot (0D)
176(2)
8.3 Miniaturization-Induced Coloration of Metals
178(5)
8.4 Plasmonic Lenses
183(4)
8.4.1 Confinement-Based Lensing
183(1)
8.4.2 Transmission-Based Lensing
184(2)
8.4.3 Shape Effects in Plasmonic: Rods Versus Spheres
186(1)
8.5 Metamaterials: Negative Refractive Index
187(1)
8.6 Heat Loss: are Plasmonic-Based Devices Practical?
187(3)
8.7 Synthesis of Metal-Based Nanostructures
190(15)
8.7.1 Physical and Semi-Physical Procedures
190(1)
8.7.2 Chemical Procedures
190(9)
8.7.3 Refining and Harvesting Cold
199(1)
8.7.4 Toxicity and Safety Issues of Metal-Based Nanoparticles
200(1)
References
201(4)
9 Nanosilicon
9.1 Bandgap and Excitons
205(1)
9.2 Direct and Indirect Bandgap Materials
205(2)
9.2.1 Effective Mass
206(1)
9.3 Enhancing and Blue Shifting of Luminescence by Quantum Confinement
207(2)
9.4 Making Silicon Clow: Quantum Confinement
209(10)
9.5 Large Nonluminescent Particles: Light Scattering
219(3)
9.5.1 Rayleigh Scattering
219(1)
9.5.2 Mie Scattering
220(1)
9.5.3 Directional Light Scattering
220(2)
9.6 Optical Nonlinearity in Nano Silicon
222(9)
9.7 Optical Cain in Nanosilicon-Based Material
231(4)
9.8 Spectral Bandwidth and Lifetime of Luminescence
235(4)
9.9 Electron Transport Through Si Nanoparticles
239(2)
9.10 Molecular Structure
241(16)
9.10.1 Prototype and Coordinates of Hydrogenated Particles (Supermolecule)
241(4)
9.10.2 Novel Si-Si Bonds (Molecular-Like Behavior)
245(1)
9.10.3 Structural Stability of the Prototype
246(3)
9.10.4 Material Properties: Dielectric Constant and Effective Mass
249(1)
9.10.5 Excited States (Molecular-Like Bands)
250(1)
9.10.6 Phonon Structure: Vibration Fingerprints (Raman Scattering)
250(4)
9.10.7 Collective Molecular Surface
254(1)
9.10.8 X-Ray Scattering by Ultrasmall Si Nanoparticles: Form Factors
254(3)
9.11 Synthesis of Silicon Nanoparticles
257(15)
9.11.1 Synthesis of Porous Silicon
257(3)
9.11.2 Synthesis of Si Nanoparticles
260(1)
9.11.3 Physical Techniques
260(2)
9.11.4 Physicochemical Techniques
262(1)
9.11.5 Chemical Techniques
262(1)
9.11.6 Electrochemical Techniques
263(1)
9.11.7 Discreetly-Sized Ultrasmall Si Nanoparticles
264(4)
9.11.8 Metal-Assisted Synthesis of Si Nanoparticles
268(4)
9.12 Metal-Assisted Synthesis of Si Nanowires or Pillars
272(1)
9.13 Low-Cost Metallurgical Route for Synthesis of Silicon Nanoparticles
272(5)
9.14 Making Silicon Smart (Functionalization) and its Effect on the Bandgap
277(3)
9.14.1 Aggregation and Solubility
278(2)
9.14.2 Stability in Acid
280(1)
9.15 Safety of Nanosilicon: Silicic Acid (Monotoxic Waste Product)
280(7)
References
281(6)
10 Nanocarbon
10.1 Bulk Diamond and Graphite
287(1)
10.2 Fullerenes (Nanocomponents)
288(3)
10.3 Sorting Metallic and Semiconducting Single-Walled Carbon Nanotubes
291(1)
10.4 Defects in Carbon Nanostructures
291(4)
10.4.1 Types of Defects
292(1)
10.4.2 Synthesis-Induced Defects
292(1)
10.4.3 Postsynthesis Defects and Reconstruction
293(1)
10.4.4 Confinement Effects
294(1)
10.4.5 Uses of Defects
295(1)
10.5 Purification/Clean-Up of CNTs
295(2)
10.6 Strides, Breakthrough, and Challenges Toward Applications (Electronic and Mechanical)
297(1)
10.6.1 Electronics
297(1)
10.6.2 Photonics
297(1)
10.6.3 Integration in CMOS
297(1)
10.6.4 Physical (Mechanical/Thermal/Bio)
297(1)
10.6.5 Platform Developments
297(1)
10.6.6 Challenges
298(1)
10.6.7 CNT Entanglement and CNT-Paper
298(1)
10.7 Treatment and Functionalization
298(1)
10.8 Graphene, Pencils, and Chicken Wires
299(2)
10.9 Electronic Impact
301(5)
10.9.1 Synthesis of Graphene
301(2)
10.9.2 Graphene and Nanotube Transistors and Chips
303(2)
10.9.3 Graphene Paper
305(1)
10.9.4 Graphene Supercapacitor Electrode
305(1)
10.9.5 Bendable Electronics
305(1)
10.10 Other Applications
306(1)
10.11 Is Graphene the New Silicon?
306(1)
10.12 Synthesis of Carbon Nanotube
307(4)
References
308(3)
11 Material and Functionality Integration
11.1 Binary Silicon-Metal Systems
311(1)
11.2 Wafer Bonding
312(1)
11.3 Metal Silicide
313(1)
11.3.1 Silicide Films
314(1)
11.3.2 Nanostructured Silicide
314(1)
11.4 Plasmonic-Silicon Integration
314(5)
11.4.1 Plasmonic Electric Stress
314(1)
11.4.2 Plasmonic Antireflection Effects
315(4)
11.5 Synthesis of Si Nanowires Using Metal (Gold) Nanoparticle Seeds
319(3)
11.6 Synthesis of Silicon Nanopillars Using Silver Ion Etching
322(2)
11.6.1 Control of Aspect Ratio and Orientation of Si Nanowires
324(1)
11.7 Gold-Assisted Synthesis of Silicon Nanoparticles
324(4)
11.7.1 Gold Deposition
325(1)
11.7.2 Charge Injection
326(2)
11.8 Synthesis of Cold Nano Wires/Rods Using Silicon Nanoparticle
328(2)
11.9 Silicon-Metal Core Shell
330(3)
11.10 Integration of Carbon in Silicon
333(8)
11.10.1 Fullerenes and Nanotubes on Silicon Surfaces
334(1)
11.10.2 C-Nanotubes in CMOS
335(1)
11.10.3 Si Waveguides With Nanotubes
336(1)
11.10.4 Carbon-Nanotube in Copper: Ultra Conductive
337(2)
References
339(2)
12 Delivery of Nanoparticles on Surfaces
12.1 Mechanical-Based Delivery
341(8)
12.1.1 Dispense Evaporation: Acetone, Water Crystals
341(1)
12.1.2 Guided Deposition/Assembly
341(2)
12.1.3 Atomizer (Spray Coating)
343(1)
12.1.4 Spin Coating
343(2)
12.1.5 Incubation
345(2)
12.1.6 Colloidal Self Assembly
347(1)
12.1.7 Ink-Jet
347(2)
12.2 Electric Based: Electric Deposition Electrospray
349(6)
12.2.1 Electrochemical Deposition
349(2)
12.2.2 Field-Driven Assembly
351(1)
12.2.3 Electrospray
352(2)
12.2.4 Magnetic Control
354(1)
12.3 Patterning: Optical Lithography With Nanoparticles
355(2)
12.4 Delivery by Dispersion in Polymers and Adhesives
357(2)
12.5 Diffusion-Based Delivery in Body
359(4)
References
361(2)
13 Advanced and Low Cost Energy and Lighting Devices
13.1 Energy Harvest-Photovoltaics
363(30)
13.1.1 Standard Solar Cell
363(30)
13.2 Current Source (UV and Infrared Photocurrent Sensors)
393(4)
13.3 Biofuel Cells
397(7)
13.3.1 Metal Catalyst
399(5)
13.4 Supercapacltor Storage
404(8)
13.4.1 Standard Capacitor
404(8)
13.5 Solid-State-LED White Lighting
412(11)
13.5.1 LED Configurations and Phosphors for Producing White Light
413(3)
13.5.2 Red Phosphor Challenge
416(1)
13.5.3 Nanosilicon-Based Solution
417(3)
13.5.4 LED Filament
420(1)
13.5.5 Heat Management and its Implication
421(1)
13.5.6 Plasmon-Enhanced Emission From Quantum Wells (LED)
422(1)
13.5.7 Plasmon-Enhanced Emission From Phosphor Layers
423(1)
13.6 Renewable Energy and Nanotechnology
423(8)
13.6.1 Solar
424(1)
References
425(6)
14 Electronics and Communication
14.1 Scaling Down Integrated-Circuit (IC)
431(11)
14.1.1 Shrinking and Making Transistors Faster
431(1)
14.1.2 Strained Faster Nanotransistors
432(3)
14.1.3 Germanium Nanotransistors on Silicon
435(3)
14.1.4 Molecular Organic Electronics
438(4)
14.2 Nonvolatile Flash Memory Cells: Silicon- and Metal-Based Nanoparticles
442(22)
14.2.1 Conventional Flash Memory
443(3)
14.2.2 Silicon Nanoparticle Memory
446(9)
14.2.3 Metal-Based Nanoparticles Nanomemory
455(6)
14.2.4 Flexible Flash Memories: Metal Versus Silicon-Based
461(3)
14.3 Volatile Memory Dynamic Random-Access Memory (DRAM)
464(2)
14.4 Commercialization Issues Stages of Development of Si-Based Nanomemory
466(4)
14.5 Silicon Quantum Computing
470(8)
14.5.1 Spin Coherence
473(1)
14.5.2 Spin in Silicon or Phosphorus Impurity Donors in Silicon
474(4)
14.6 Integration of Silicon with Metal
478(9)
14.6.1 Core-Shell Silicon-Er (1.54 μm Emission)
478(3)
14.6.2 Noble Metal (Plasmonic) - Silicon Core Shell
481(2)
References
483(4)
15 Biomedicine and Chemical Sensing
15.1 Confined Light in Service of Substance Detection
487(2)
15.2 Plasmonichyperthermic-Based Treatment and Monitoring of Acute Disease
489(2)
15.3 Drug Delivery and Images
491(3)
15.3.1 Molecular Signature of Death of Cancer Cells
492(1)
15.3.2 Containers for Drug Delivery
492(2)
15.3.3 Photoacoustic Imaging of Cancer Cells
494(1)
15.4 Si-Based Electrode Sensor
494(1)
15.5 Metal-Based Nanoparticles
495(2)
References
496(1)
16 Nanoeffects in Ancient Technology and Art and in Space
16.1 Metal Nanoparticles (Plasmonics) in Class and Pottery
497(4)
16.1.1 Stained Glass
497(1)
16.1.2 Lusterware Pottery
497(1)
16.1.3 Gustav Mie Theory
498(1)
16.1.4 Red Stain
499(1)
16.1.5 Glaze Reflections
499(2)
16.2 Carbon Nanotube in Swords
501(1)
16.3 Nanosilicon in Space
502(11)
16.3.1 Red and Blue Rectangle
502(2)
16.3.2 Nanosilicon and Nanoaromatic
504(9)
16.4 Nanotechnology, Light (Optics), and Space
513(6)
16.4.1 Optics and Science Development
514(1)
16.4.2 Optics and Nanoscience
514(1)
16.4.3 Natural Nonman-Made Nanostructures
515(1)
References
515(4)
17 Nanotechnology and Society: From Lab to Consumer
17.1 Mass Production of Nanomaterial
519(2)
17.2 Products and Start-Ups and Management
521(2)
17.3 Intellectual Property and Freedom of Operation in Nanotechnology
523(1)
17.3.1 The Bayh-Dole Act
523(1)
17.4 Open Innovation: Accelerate and Leapfrog STI
524(8)
17.4.1 "Fast Follower" Versus "First Mover" Business Model
526(1)
17.4.2 Open Innovation With Developing Countries
527(3)
17.4.3 Nanotechnology Catalyst for Global Cooperation
530(1)
17.4.4 Nanodivide - Widening and Closing the Nanodivide
531(1)
17.5 Partnerships: Academia-Industry-Government
532(6)
17.5.1 Priorities and Role of Government
534(1)
17.5.2 Academia-Industry Partnership
534(2)
17.5.3 Commercialization Initiative (Obama's Whitehouse)
536(2)
17.6 Tech Angels, Ventures, Mavericks, and Risk
538(2)
17.7 Nanoculture and Societal Implications
540(17)
17.7.1 Integration of Research, Education, and Training
541(10)
17.7.2 Environment, Fears and Concerns, Safety, Military and Social Issues
551(5)
17.7.3 Nanotechnology Strategy for the Poor: The Grand Challenge Initiative for Developing Countries
556(1)
17.7.4 Ethics in Nanotechnology
556(1)
17.8 Global Status of Nanotechnology
557(2)
17.8.1 Commercialization-Science Lag
559(1)
17.8.2 Other Developing Countries
559(1)
17.9 The Internet of Things (loT)
559(2)
17.10 Nanotech and Energy Security
561(2)
17.11 The Paris Agreement and the Environment and Nanotechnology
563(1)
17.12 Big Data, Nanotechnology, and Elections
564(2)
17.13 Nanotechnology and Consumer Products
566(5)
References
568(3)
18 Final Remarks
18.1 Enhanced Interest and Support of Science
571(1)
18.2 Enhanced Interest and Support of Education
571(1)
18.3 Development of Enhanced Material and Composites
572(1)
18.4 Enhanced Manufacturing
573(1)
18.5 Nanotechnology Consumer Products
574(1)
18.6 Challenges
575(2)
References
576(1)
Index 577
Munir Nayfeh is Professor of Physics at the University of Illinois, USA, and President, NanoSi Advanced Technologies, Inc. He has previously worked at Yale and Oak Ridge National Laboratory, and is the founder of both, Nano Silicon Solar, Inc and Parasat-NanoSi, LLC .His specialist areas are atomic, molecular, laser spectroscopy, and nanotechnology.