Atnaujinkite slapukų nuostatas

Fundamentals of Medical Ultrasonics [Kietas viršelis]

(University of Bergen, Norway)
  • Formatas: Hardback, 248 pages, aukštis x plotis: 234x156 mm, weight: 620 g, 8 Tables, black and white; 65 Line drawings, black and white; 16 Halftones, black and white
  • Išleidimo metai: 23-Feb-2011
  • Leidėjas: CRC Press
  • ISBN-10: 0415563534
  • ISBN-13: 9780415563536
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 248 pages, aukštis x plotis: 234x156 mm, weight: 620 g, 8 Tables, black and white; 65 Line drawings, black and white; 16 Halftones, black and white
  • Išleidimo metai: 23-Feb-2011
  • Leidėjas: CRC Press
  • ISBN-10: 0415563534
  • ISBN-13: 9780415563536
Kitos knygos pagal šią temą:

Ultrasonic imaging is an economic, reliable diagnostic technique. Owing to recent therapeutic applications, understanding the physical principles of medical ultrasonics is becoming increasingly important.

Covering the basics of elasticity, linear acoustics, wave propagation, nonlinear acoustics, transducer components, ultrasonic imaging modes, basics on cavitation and bubble physics, as well as the most common diagnostic and therapeutic applications, Fundamentals of Medical Ultrasonics explores the physical and engineering principles of acoustics and ultrasound as used for medical applications.

It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

1 Introduction
17(8)
1.1 Definition of sound
18(1)
1.2 A brief history of cavitation and ultrasonics
19(5)
1.3 Outline and acknowledgements
24(1)
2 Stress, strain and elasticity
25(26)
2.1 The uniform state of stress
25(1)
2.2 Stress on an inclined plane
26(3)
2.3 Transformation of stresses for rotation of axes
29(1)
2.4 Principal stresses
30(2)
2.5 Stationary values of shear stress
32(2)
2.6 Octahedral stresses
34(2)
2.7 Hydrostatic (dilational) and deviatoric stress tensors
36(1)
2.8 Strains and displacements
37(3)
2.9 Generalised Hooke's law
40(2)
2.9.1 The bulk modulus
41(1)
2.9.2 Lame's constant
42(1)
2.10 Equilibrium equations for three dimensions
42(1)
2.11 Strain compatibility equations
43(1)
2.12 Plane strain
44(1)
2.13 Plane stress
45(1)
2.14 Polar coordinates
45(2)
2.14.1 Strain components in polar coordinates
46(1)
2.14.2 Hooke's law
46(1)
2.14.3 Equilibrium equations
47(1)
2.14.4 Strain compatibility equation
47(1)
2.14.5 Stress compatibility equation
47(1)
2.15 Stress functions
47(2)
2.16 Stress functions in polar coordinates
49(2)
3 Vibrations
51(12)
3.1 Mass on a spring
51(2)
3.2 Free vibrations
53(1)
3.3 Damped free vibrations
54(2)
3.4 Forced vibrations
56(2)
3.5 Undamped forced vibrations
58(1)
3.6 Damped forced vibrations
59(2)
3.7 Nonlinear springs
61(2)
4 Waves and sound
63(26)
4.1 Wave equation
63(2)
4.2 Speed of sound in air
65(1)
4.3 Solutions of the 1-dimensional wave equation
66(1)
4.4 Sound energy
67(1)
4.5 Point and line sources
68(1)
4.6 Doppler effect
69(1)
4.7 Root-mean-square pressure
70(1)
4.8 Superposition of waves
70(1)
4.9 Beats
71(1)
4.10 Complex representation of a plane, harmonic wave
72(1)
4.11 Standing waves
72(1)
4.12 Fourier transform
73(1)
4.13 Decibel scale
73(2)
4.13.1 Propagation from a point source
74(1)
4.13.2 Distance doubling
75(1)
4.14 Vectorial notation for the wave equation
75(1)
4.15 Plane waves in isotropic media
76(2)
4.16 Waves in fluids
78(1)
4.17 Mechanisms of wave attenuation
78(2)
4.18 Reflection and transmission
80(6)
4.18.1 Derivation of Snel's law
80(1)
4.18.2 Critical angle
81(1)
4.18.3 Reflection and transmission of waves on a plane fluid-fluid interface
82(1)
4.18.4 Reflection and transmission coefficients
82(2)
4.18.5 Normal incidence
84(1)
4.18.6 Normal incidence on a wall (two fluid-fluid boundaries)
84(1)
4.18.7 Impedance of a rigid-backed fluid layer
85(1)
4.19 Scattering
86(1)
4.20 Nonlinear propagation
86(3)
5 Transducers
89(34)
5.1 The piezo-electric effect
90(10)
5.1.1 Overview of piezo-electricity
90(1)
5.1.2 Piezo-electric nomenclature
90(3)
5.1.3 Piezo-electric constitutive equations
93(3)
5.1.4 Piezo-electric coefficients
96(2)
5.1.5 Electro-mechanical coupling coefficient
98(2)
5.2 Piezo-electric materials
100(3)
5.2.1 Piezo-electric ceramic
100(2)
5.2.2 Piezo-electric polymers
102(1)
5.3 Transducer bandwidth
103(1)
5.4 Transducer construction
104(19)
5.4.1 Piezo-electric element
105(4)
5.4.2 Backing material
109(1)
5.4.3 Acoustic impedance matching
110(3)
5.4.4 Electrical impedance matching
113(10)
6 Radiated fields
123(24)
6.1 Continuous wave excitation
124(9)
6.1.1 Circular plane piston in a rigid baffle
125(6)
6.1.2 Rectangular plane piston in an infinite baffle
131(2)
6.2 Transient excitation
133(3)
6.2.1 Transient radiation from a circular plane piston
134(2)
6.2.2 Transient radiation from a rectangular plane piston
136(1)
6.3 Focussing
136(4)
6.3.1 Shaped piezo-electric elements
138(1)
6.3.2 Acoustic lenses
139(1)
6.4 Transducer arrays
140(7)
6.4.1 Beam steering
141(2)
6.4.2 Beam focussing
143(1)
6.4.3 Transducer array configurations
143(4)
7 Medical imaging
147(30)
7.1 Standard ultrasonic imaging modes
147(13)
7.1.1 A-mode
147(2)
7.1.2 B-mode
149(1)
7.1.3 M-mode
150(1)
7.1.4 Real-time scanning
151(1)
7.1.5 Dynamic focus
152(1)
7.1.6 Compound scanning
152(1)
7.1.7 Curved anatomical M-mode
153(1)
7.1.8 Resolution of a B-mode image
153(1)
7.1.9 Factors affecting image quality
154(3)
7.1.10 Harmonic imaging
157(2)
7.1.11 3D/4D B-mode methods
159(1)
7.2 Doppler methods
160(9)
7.2.1 Single-beam Doppler methods
160(3)
7.2.2 Continuous wave Doppler
163(1)
7.2.3 Pulsed wave Doppler
163(2)
7.2.4 High pulse repetition frequency Doppler
165(1)
7.2.5 Directivity and spectral analysis
165(1)
7.2.6 Duplex scanning
166(1)
7.2.7 Colour Doppler
167(1)
7.2.8 Power Doppler
168(1)
7.2.9 Blood flow measurement
169(1)
7.3 Special techniques
169(2)
7.3.1 Endosonographic methods
169(1)
7.3.2 Ultrasound-guided biopsy
170(1)
7.3.3 Tissue Doppler imaging (TDI)
170(1)
7.4 Artefacts
171(2)
7.4.1 Attenuation
171(1)
7.4.2 Reverberation
171(1)
7.4.3 Mirror artefact
171(1)
7.4.4 Side lobes
172(1)
7.4.5 Other artefacts
172(1)
7.5 Biological effects of ultrasound and safety regulations
173(4)
7.5.1 Thermal index
173(1)
7.5.2 Mechanical index
174(1)
7.5.3 Clinical studies
175(1)
7.5.4 Concluding remarks on biological effects
175(2)
8 Bubble physics
177(28)
8.1 Hollow sphere
177(1)
8.2 Cavitation threshold
178(3)
8.3 Fundamental equation of bubble dynamics
181(1)
8.4 Pressure radiated by a bubble
182(1)
8.5 Viscous fluids
182(1)
8.6 Oscillations
183(3)
8.7 Disruption
186(3)
8.8 Diffusion
189(2)
8.9 Radiation forces
191(4)
8.9.1 Travelling sound wave
191(2)
8.9.2 Standing sound wave
193(1)
8.9.3 Radiation forces between bubbles
194(1)
8.10 Coalescence
195(6)
8.10.1 Flattening of the interface
196(2)
8.10.2 Film drainage
198(1)
8.10.3 No-slip interfaces
199(1)
8.10.4 Free interfaces
200(1)
8.10.5 Film rupture
201(1)
8.11 Jetting
201(4)
9 CEUS and sonoporation
205(14)
9.1 Commercial ultrasound contrast agents
205(3)
9.2 CEUS
208(1)
9.3 Some non-cardiac imaging applications
209(2)
9.3.1 Liver
209(1)
9.3.2 Pancreas
210(1)
9.3.3 Gastrointestinal tract
210(1)
9.4 Molecular imaging
211(1)
9.5 Increased drug uptake
211(1)
9.6 Causes of sonoporation
212(2)
9.7 Drug carriers
214(1)
9.8 Gene delivery
214(1)
9.9 Therapeutic gases
214(1)
9.10 Antibubbles
215(1)
9.11 Cell death
216(1)
9.12 High-intensity focussed ultrasound
216(1)
9.13 Concluding remarks
217(2)
A List of symbols 219(14)
B Recommended reading 233(2)
C Biographies 235(4)
Index 239
Michiel Postema is Professor of Experimental Acoustics at the University of Bergen, Norway.