Atnaujinkite slapukų nuostatas

Fundamentals of Satellite Remote Sensing [Kietas viršelis]

4.44/5 (17 ratings by Goodreads)
Edited by (University of Arizona, Tucson, USA), (Universidad de Alcala, Alcala de Henares, Spain)
  • Formatas: Hardback, 448 pages, aukštis x plotis: 234x156 mm, weight: 771 g, 228 - PPI 496; 32 Tables, black and white; 230 Illustrations, black and white
  • Išleidimo metai: 01-Dec-2009
  • Leidėjas: Taylor & Francis Ltd
  • ISBN-10: 0415310849
  • ISBN-13: 9780415310840
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 448 pages, aukštis x plotis: 234x156 mm, weight: 771 g, 228 - PPI 496; 32 Tables, black and white; 230 Illustrations, black and white
  • Išleidimo metai: 01-Dec-2009
  • Leidėjas: Taylor & Francis Ltd
  • ISBN-10: 0415310849
  • ISBN-13: 9780415310840
Kitos knygos pagal šią temą:
An extensive review of remote sensing principles with an emphasis on environmental applications, Fundamentals of Satellite Remote Sensing discusses a wide range of topics, from physical principles to data acquisition systems and on to visual and digital interpretation techniques. The text focuses on the interpretation and analysis of remote sensing images and how they improve our understanding of environmental processes and their interaction with human activities.



The authors discuss new interpretation approaches, including hyperspectral analysis, high-spatial resolution data, and radiative transfer models. The presentation includes an analysis of accuracy assessment methods and demonstrates how to integrate remote sensing results with geographic information systems. It also covers recent missions, such as Terra-Aqua, Envisat, Ikonos-Quickbird-Geoeye and SPOT-5, as well as LIDAR and interpherometric radar.



The discussion of visual criteria to extract interpretation from satellite images emphasizes differences and similarities with conventional photo-interpretation techniques. A chapter on accuracy assessment and the connection between remote sensing and geographic information systems helps readers extend the interpretation of satellite images to a more operational, applications-oriented framework.

Recenzijos

The organization of this book lends itself to use as a practitioners reference or as a remote sensing course textbook with its progression through the various topics needing consideration from image acquisition to product delivery it expounds on a number of topics typically not addressed in detail in other publications. the mathematical step-by-step approach to image correction is very useful. warrants consideration as a primary or a secondary text for the practitioner or for academia.



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, November 2010

Foreword xi
Introduction
1(20)
Definition and Objectives
1(4)
Historical Background
5(5)
International Space Law
10(2)
Advantages of Space-Based Observations
12(6)
Global Coverage
13(2)
A Synoptic View
15(1)
Multiscale Observations
15(1)
Observations over the Nonvisible Regions of the Spectrum
16(1)
Repeat Observation
16(1)
Immediate Transmission
17(1)
Digital Format
17(1)
Sources of Information on Remote Sensing
18(2)
Review Questions
20(1)
Physical Principles of Remote Sensing
21(42)
Fundamentals of Remote Sensing Signals
21(3)
The Electromagnetic Spectrum
24(1)
Terms and Units of Measurement
25(3)
Electromagnetic Radiation Laws
28(5)
Spectral Signatures in the Solar Spectrum
33(14)
Introduction
33(5)
Vegetation Reflectance
38(4)
Soil Reflectance Properties
42(3)
Water in the Solar Spectrum
45(2)
The Thermal Infrared Domain
47(4)
Characteristics of EM Radiation in Thermal Infrared
47(2)
Thermal Properties of Vegetation
49(1)
Soils in Thermal Domain
50(1)
Thermal Signature of Water and Snow
51(1)
The Microwave Region
51(6)
Characteristics of Electromagnetic Radiation in the Microwave Region
51(4)
Characteristics of Vegetation in the Microwave Region
55(1)
Characteristics of Soil and Water in the Microwave Region
56(1)
Atmospheric interactions
57(3)
Atmospheric Absorption
58(1)
Atmospheric Scattering
59(1)
Atmospheric Emission
59(1)
Review Questions
60(3)
Sensors and Remote Sensing Satellites
63(52)
Types of Sensors
63(1)
Resolution of a Sensor System
63(7)
Spatial Resolution
64(1)
Spectral Resolution
65(2)
Radiometric Resolution
67(1)
Temporal Resolution
68(1)
Angular Resolution
69(1)
Relationship among Different Types of Resolution
70(1)
Passive Sensors
70(8)
Photographic Cameras
71(3)
Cross-Track Scanners
74(2)
Along-Track (Push-Broom) Scanners
76(1)
Video Cameras
77(1)
Microwave Radiometers
78(1)
Active Sensors
78(9)
Radar
78(7)
LIDAR
85(2)
Satellite Remote Sensing Missions
87(25)
Satellite Orbits
87(2)
The Landsat Program
89(2)
SPOT Satellite
91(2)
The IRS Program
93(2)
High-Spatial-Resolution Commercial Satellites
95(1)
TIROS-NOAA
96(2)
Other Polar Orbiting Meteorological Satellites
98(1)
Terra-Aqua
99(5)
Geostationary Meteorological Satellites
104(8)
Review Questions
112(3)
Basis for Interpretation of Remote Sensing Images
115(20)
Constraints in Using Remote Sensing Data
115(3)
What Can Be Estimated from the Images?
115(2)
Costs of Data Acquisition
117(1)
End-User Requirements
117(1)
Types of Interpretation
118(2)
Thematic Classification
119(1)
Generation of Biophysical Variables
119(1)
Change Detection
119(1)
Spatial Patterns
120(1)
Organization of Remote Sensing Project
120(10)
Description of Objectives
120(1)
Scale and Resolution
121(2)
Classification Typology
123(3)
Selection of Imagery
126(1)
Image Formats and Media
127(1)
Selection of Interpretation Method: Visual or Digital Processing?
128(2)
Interpretation Phase
130(3)
Presentation of Study Cases
133(1)
Review Questions
134(1)
Visual Interpretation
135(24)
Characteristics of Photographic Images
135(1)
Feature Identification
135(1)
Criteria for Visual Interpretation
136(14)
Brightness
138(1)
Color
139(3)
Texture
142(2)
Spatial Context
144(1)
Shadows
145(1)
Spatial Pattern
146(1)
Shape and Size
147(1)
Stereoscopic View
148(1)
Period of Acquisition
148(2)
Elements of Visual Analysis
150(7)
Geometric Characteristics of a Satellite Image
150(1)
Effect of Spatial Resolution in Visual Analysis
150(1)
Effect of Spectral Resolution in Visual Analysis
151(2)
Color Composites
153(1)
Multitemporal Approaches
154(3)
Review Questions
157(2)
Digital Image Processing (I): Enhancements and Corrections
159(78)
Structure of a Digital Image
159(3)
Media and Data Organization
162(2)
Data Storage
162(1)
Recording Formats
162(2)
Digital Image Processing Equipment
164(2)
General File Operations
166(8)
File Management
167(3)
Display Utilities
170(1)
Image Statistics and Histograms
171(3)
Visual Enhancements
174(17)
Contrast Enhancement
175(1)
Color Look-Up Table
175(1)
Contrast Compression
176(2)
Contrast Stretch
178(4)
Color Composites
182(1)
Pseudo-Color
183(1)
Filters
184(1)
Digital Filters
184(3)
Low-Pass Filter
187(1)
High-Pass Filter
188(3)
Image Corrections
191(43)
Sources of Error in Satellite Imagery
191(3)
Radiometric Corrections
194(1)
Restoration of Missing Lines and Pixels
194(1)
Correction of Striping Effects
195(2)
Calculating Reflectance
197(18)
Calculating Temperature
215(3)
Geometric Corrections
218(1)
Introduction
218(1)
Correction from Orbital Models
219(3)
Correction from Control Points
222(3)
Calculating the Transformation Function
225(3)
Transference of the Original DL to Its Corrected Position
228(5)
Correction with Digital Elevation Models
233(1)
Review Questions
234(3)
Digital Image Processing (II): Generation of Thematic Information
237(106)
Continuous Variables
238(33)
Inductive and Deductive Models in Remote Sensing
239(4)
Principal Component Analysis
243(6)
Spectral Vegetation Indices (VIs)
249(2)
Ratio-Based VIs
251(5)
Optimized VIs
256(4)
Orthogonal-Based VIs
260(5)
Extraction of Subpixel Information
265(6)
Digital Image Classification
271(39)
Introduction
271(2)
Training Phase
273(1)
Basic Concepts
273(2)
Supervised Classification
275(3)
Unsupervised Classification
278(3)
Mixed Methods
281(1)
Analysis of the Training Statistics
282(5)
Assignment Phase
287(1)
Minimum Distance Classifier
287(1)
Parallelepiped Classifier
288(1)
Maximum Likelihood Classifier
289(5)
Decision Tree Classifier
294(2)
Neural Networks
296(4)
Fuzzy Classification
300(2)
Hyperspectral Classification
302(3)
Contextual Classifiers
305(3)
Classification Outputs
308(1)
Mapping Products
309(1)
Statistical Products
310(1)
Techniques of Multitemporal Analysis
310(19)
Temporal Domain in Remote Sensing Studies
310(2)
Prerequisites for Multitemporal Analysis
312(1)
Multitemporal Matching
313(1)
Radiometric Calibration
314(1)
Methods for Seasonal Analysis
315(4)
Change Detection Techniques
319(1)
Multitemporal Color Composites
320(1)
Image Differencing
321(1)
Multitemporal Ratios
321(2)
Principal Components
323(2)
Regression Analysis
325(1)
Change Vector Analysis
325(1)
Defining Change Thresholds
326(1)
Multitemporal Analysis of Classified Images
327(2)
Analysis of Landscape Patterns
329(10)
Remote Sensing and Landscape Ecology
329(1)
Spatial Metrics for Interval-Scale Images
330(1)
Global Metrics for Continuous Data
330(3)
Local Metrics for Continuous Data
333(2)
Spatial Metrics for Classified Images
335(1)
Global Metrics for Classified Data
335(1)
Local Metrics for Classified Data
336(2)
Landscape Structural Dynamics
338(1)
Review Questions
339(4)
Accuracy Assessment
343(28)
Relevance of Validating Results
343(1)
Methods to Estimate Accuracy
344(1)
Sources of Error
345(5)
Sensor Limitations
345(1)
Method of Analysis
346(1)
Landscape Complexity
346(3)
Verification Process
349(1)
Sampling Design
350(4)
Error Distribution
350(1)
Sampling Unit
350(1)
Sampling Strategies
351(1)
Sample Size
352(2)
Gathering Information
354(2)
Measuring Error in Interval-Scale Variables
356(1)
Measuring Error in Classified Images
356(9)
The Confusion Matrix
356(1)
Global Accuracy
357(3)
User Accuracy and Producer Accuracy
360(1)
Kappa Statistic
361(2)
Normalizing the Confusion Matrix
363(2)
Validation of Binary Classes
365(1)
Verification of Multitemporal Analysis
365(3)
Review Questions
368(3)
Remote Sensing and Geographic Information Systems
371(12)
The Need for GIS
371(1)
Trends in GIS and Remote Sensing Development
371(2)
Common Technical Requirements
373(1)
GIS as Input for Remote Sensing Interpretation
374(1)
Remote Sensing as Input for GIS
375(2)
Availability of Geographic Information
375(1)
Generation of Input Variables
376(1)
Updating the Information
376(1)
Integration of Satellite Images and GIS
377(4)
Review Questions
381(2)
Appendix 383(4)
References 387(32)
Index 419
Universidad de Alcala, Spain University of Arizona, Tucson, USA