Atnaujinkite slapukų nuostatas

El. knyga: Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition

(Universidad de Alcala, Alcala de Henares, Spain)
  • Formatas: 432 pages
  • Išleidimo metai: 22-Jan-2020
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429014451

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition, is a definitive guide to remote sensing systems that focuses on satellite-based remote sensing tools and methods for space-based Earth observation (EO). It presents the advantages of using remote sensing data for studying and monitoring the planet, and emphasizes concepts that make the best use of satellite data. The book begins with an introduction to the basic processes that ensure the acquisition of space-borne imagery, and provides an overview of the main satellite observation systems. It then describes visual and digital image analysis, highlights various interpretation techniques, and outlines their applications to science and management. The latter part of the book covers the integration of remote sensing with Geographic Information System (GIS) for environmental analysis. This latest edition has been written to reflect a global audience and covers the most recent advances incorporated since the publication of the previous book, relating to the acquisition and interpretation of remotely sensed data.

New in the Third Edition:











Includes additional illustrations in full color.





Uses sample images acquired from different ecosystems at different spatial resolutions to illustrate different interpretation techniques.





Includes updated EO missions, such as the third generations of geostationary meteorological satellites, the new polar orbiting platforms (Suomi), the ESA Sentinels program, and high-resolution commercial systems.





Includes extended coverage of radar and LIDAR processing methods.





Includes all new information on near-ground missions, including unmanned aerial vehicles (UAVs).





Covers new ground sensors, as well as machine-learning approaches to classification.





Adds more focus on land surface characterization, time series, change detection, and ecosystem processes.





Extends the interactions of EO data and GIS that cover different environmental problems, with particular relevance to global observation.

Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition, details the tools that provide global, recurrent, and comprehensive views of the processes affecting the Earth. As one of CRCs Essential titles, this book and stands out as one of the best in its field and is a must-have for researchers, academics, students, and professionals involved in the field of environmental science, as well as for libraries developing collections on the forefront of this industry.
Preface xiii
Author xv
Chapter 1 Introduction 1(20)
1.1 Definition and Objectives
1(2)
1.2 Historical Background
3(6)
1.3 International Space Law
9(3)
1.4 Benefits of Environmental Monitoring from Satellite Sensors
12(5)
1.4.1 Global Coverage
12(1)
1.4.2 Synoptic View
12(1)
1.4.3 Multiscale Observations
13(2)
1.4.4 Observations over the Nonvisible Regions of the Spectrum
15(1)
1.4.5 Repeat Observation
15(1)
1.4.6 Immediate Transmission
16(1)
1.4.7 Digital Format
16(1)
1.5 Sources of Information on RS Data
17(2)
1.6 Review Questions
19(2)
Chapter 2 Physical Principles of Remote Sensing 21(38)
2.1 Fundamentals of Remote Sensing Signals
21(2)
2.2 The Electromagnetic Spectrum
23(2)
2.3 Terms and Units of Measurement
25(2)
2.4 Electromagnetic Radiation Laws
27(2)
2.5 Spectral Signatures in the Solar Spectrum
29(14)
2.5.1 Introduction
29(5)
2.5.2 Vegetation Reflectance
34(3)
2.5.3 Soil Reflectance Properties
37(2)
2.5.4 Water in the Solar Spectrum
39(4)
2.6 The Thermal Infrared Domain
43(4)
2.6.1 Characteristics of EM Radiation in the Thermal Infrared
43(1)
2.6.2 Thermal Properties of Vegetation
44(1)
2.6.3 Soils in the Thermal Domain
45(1)
2.6.4 Thermal Signature of Water and Snow
46(1)
2.7 The Microwave Region
47(6)
2.7.1 Characteristics of Electromagnetic Radiation in the Microwave Region
47(4)
2.7.2 Characteristics of Vegetation in the Microwave Region
51(1)
2.7.3 Characteristics of Soil in the Microwave Region
51(1)
2.7.4 Water and Ice in the Microwave Region
52(1)
2.8 Atmospheric Interactions
53(4)
2.8.1 Atmospheric Absorption
54(1)
2.8.2 Atmospheric Scattering
55(1)
2.8.3 Atmospheric Emission
56(1)
2.9 Review Questions
57(2)
Chapter 3 Sensors and Remote Sensing Satellites 59(54)
3.1 Resolution of a Sensor System
59(6)
3.1.1 Spatial Resolution
59(2)
3.1.2 Spectral Resolution
61(1)
3.1.3 Radiometric Resolution
62(1)
3.1.4 Temporal Resolution
63(1)
3.1.5 Angular Resolution
64(1)
3.1.6 Relationship between Different Resolution Types
64(1)
3.2 Passive Sensors
65(7)
3.2.1 Photographic Cameras
65(3)
3.2.2 Across-Track Scanners
68(1)
3.2.3 Along-Track (Push-Broom) Scanners
69(1)
3.2.4 Video Cameras
70(1)
3.2.5 Microwave Radiometers
71(1)
3.3 Active Sensors
72(11)
3.3.1 Radar
72(6)
3.3.2 Lidar
78(5)
3.4 Satellite Remote Sensing Missions
83(27)
3.4.1 Satellite Orbits
83(2)
3.4.2 The Landsat Program
85(2)
3.4.3 The SPOT Satellites
87(3)
3.4.4 The Sentinel-2 Mission
90(1)
3.4.5 Other Medium-Resolution Optical Sensors
91(2)
3.4.6 High-Spatial-Resolution Satellites
93(4)
3.4.7 Geostationary Meteorological Satellites
97(1)
3.4.8 Polar-Orbiting Meteorological Satellites
98(3)
3.4.9 Terra-Aqua
101(3)
3.4.10 Sentinel-3
104(1)
3.4.11 Radar Missions
105(3)
3.4.12 Programs with Hyperspectral Sensors
108(2)
3.5 Commercialization of EO Data
110(1)
3.6 Review Questions
111(2)
Chapter 4 Basis for Analyzing EO Satellite Images 113(18)
4.1 Constraints in Using Remote Sensing Data
113(3)
4.1.1 What can be estimated from the EO Images?
113(1)
4.1.2 Costs of Data Acquisition
114(1)
4.1.3 End-User Requirements
115(1)
4.2 Types of Interpretation
116(2)
4.2.1 Thematic Classification
117(1)
4.2.2 Generation of Biophysical Variables
117(1)
4.2.3 Change Detection
117(1)
4.2.4 Spatial Patterns
117(1)
4.3 Organization of Remote Sensing Project
118(7)
4.3.1 Description of Objectives
118(1)
4.3.2 Scale and Resolution
119(2)
4.3.3 Classification Typology
121(2)
4.3.4 Selection of Imagery
123(1)
4.3.5 Image Formats and Media
124(1)
4.3.6 Selection of Interpretation Method: Visual or Digital Processing?
124(1)
4.4 Interpretation Phase
125(2)
4.5 Presentation of Study Areas
127(3)
4.6 Review Questions
130(1)
Chapter 5 Visual Interpretation 131(22)
5.1 Characteristics of Photographic Images
131(1)
5.2 Feature Identification
132(1)
5.3 Criteria for Visual Interpretation
132(13)
5.3.1 Brightness
134(1)
5.3.2 Color
134(4)
5.3.3 Texture
138(2)
5.3.4 Spatial Context
140(1)
5.3.5 Shape and Size
140(2)
5.3.6 Shadows
142(1)
5.3.7 Spatial Pattern
142(1)
5.3.8 Stereoscopic View
143(1)
5.3.9 Period of Acquisition
144(1)
5.4 Elements of Visual Analysis
145(5)
5.4.1 Geometric Characteristics of a Satellite Image
145(1)
5.4.2 Effect of Spatial Resolution in Visual Analysis
146(1)
5.4.3 Effect of Spectral Resolution in Visual Analysis
147(1)
5.4.4 Color Composites
147(1)
5.4.5 Multitemporal Approaches
147(3)
5.5 Review Questions
150(3)
Chapter 6 Digital Image Processing (I): From Raw to Corrected Data 153(82)
6.1 Structure of a Digital Image
153(2)
6.2 Media and Data Organization
155(1)
6.2.1 Data Storage
155(1)
6.2.2 Image File Formats
155(1)
6.3 Digital Image Processing Systems
156(2)
6.4 General File Operations
158(7)
6.4.1 File Management
158(1)
6.4.2 Display Utilities
159(3)
6.4.3 Image Statistics and Histograms
162(3)
6.5 Visual Enhancements
165(16)
6.5.1 Contrast Enhancement
165(8)
6.5.2 Color Composites
173(1)
6.5.3 Pseudocolor
174(2)
6.5.4 Filters
176(5)
6.6 Geometric Corrections
181(16)
6.6.1 Sources of Errors in Satellite Acquisitions
181(2)
6.6.2 Georeferencing from Orbital Models
183(4)
6.6.3 Georeferencing from Control Points
187(9)
6.6.4 Georeferencing with Digital Elevation Models
196(1)
6.7 Radiometric Corrections
197(3)
6.7.1 Restoration of Missing Lines and Pixels
197(1)
6.7.2 Correction of Striping Effects
198(2)
6.8 Generation of Basic Variables
200(32)
6.8.1 Image Calibration
201(2)
6.8.2 Reflectance
203(16)
6.8.3 Temperature
219(5)
6.8.4 Backscatter
224(1)
6.8.5 Height
225(7)
6.9 Review Questions
232(3)
Chapter 7 Digital Image Processing (II): Generation of Derived Variables 235(100)
7.1 Generation of Biophysical Variables
235(28)
7.1.1 Inductive and Deductive Models in Remote Sensing
235(3)
7.1.2 Principal Component Analysis
238(5)
7.1.3 Spectral Vegetation Indices
243(13)
7.1.4 Other Spectral Indices
256(1)
7.1.5 Extraction of Subpixel Information
257(6)
7.2 Digital Image Classification
263(40)
7.2.1 Introduction
263(2)
7.2.2 Training Phase
265(13)
7.2.3 Assignment Phase
278(21)
7.2.4 Post-Assignment Generalization
299(2)
7.2.5 Classification Outputs
301(2)
7.3 Techniques for Multitemporal Analysis
303(20)
7.3.1 Interest of the Temporal Dimension
303(2)
7.3.2 Prerequisites for Multitemporal Analysis
305(3)
7.3.3 Methods for Seasonal Analysis
308(4)
7.3.4 Change Detection Techniques
312(11)
7.4 Analysis of Spatial Properties
323(9)
7.4.1 Remote Sensing and Landscape Ecology
323(1)
7.4.2 Spatial Metrics for Interval-Scale Images
324(4)
7.4.3 Spatial Metrics for Classified Images
328(3)
7.4.4 Landscape Structural Dynamics
331(1)
7.5 Review Questions
332(3)
Chapter 8 Validation 335(22)
8.1 Relevance of Validating Results
335(1)
8.2 Approaches to Accuracy Assessment
336(2)
8.3 Sampling Design
338(4)
8.3.1 Error Characteristics
338(1)
8.3.2 Sampling Unit
339(1)
8.3.3 Sampling Strategies
339(1)
8.3.4 Sample Size
340(2)
8.4 Collecting Reference Information
342(1)
8.5 Validating Interval-Scale Variables
343(1)
8.6 Validating Classified Images
344(7)
8.6.1 Confusion Matrix
344(2)
8.6.2 Global Accuracy
346(1)
8.6.3 User and Producer Accuracy
347(1)
8.6.4 Error Bias
348(1)
8.6.5 Validation of Binary Classes
349(1)
8.6.6 Verification in Multitemporal Analysis
350(1)
8.7 Sources of Error
351(4)
8.7.1 Sensor Limitations
352(1)
8.7.2 Method of Analysis
352(1)
8.7.3 Landscape Complexity
353(1)
8.7.4 Verification Process
354(1)
8.8 Review Questions
355(2)
Chapter 9 Earth Observation and Geographic Information Systems 357(10)
9.1 Trends in GIS and EO Development
357(1)
9.2 GIS as Input for Image Interpretation
358(2)
9.3 EO as a Source of Geographic Information
360(2)
9.3.1 Availability of Geographic Information
360(1)
9.3.2 Generation of Input Variables
360(1)
9.3.3 Updating the Information
361(1)
9.4 Integration of Satellite Images and GIS
362(2)
9.5 Review Questions
364(3)
References 367(32)
Appendix 399(1)
Acronyms Used in This Textbook 399(2)
Answers to Review Questions 401(2)
Index 403
Emilio Chuvieco is a Professor of Geography and director of the Environmental Ethics chair at the University of Alcalį, Spain, where he coordinates the Master program in Geographic Information Technologies, and leads the "Environmental Remote Sensing Research Group". Visiting professor at the U.C. Berkeley and Santa Barbara, the Canadian Remote Sensing Center and the University of Maryland. He has given short post-graduate courses en 21 countries. Advisor of 35 Ph.D. dissertations. Principal investigator of 30 research projects and 22 contracts. Author of 29 books and 344 scientific papers and book chapters, 141 of which are indexed in Scopus. Former president of the Spanish Remote Sensing Society and the Geographic Information Technologies group of the Association of Spanish Geographers. Corresponding member of the Spanish Academy of Sciences since 2004. He is the science leader of the Fire Disturbance project within the European Space Agencys Climate Change Initiative Program. Co-editor in Chief of Remote Sensing of Environment.