Atnaujinkite slapukų nuostatas

El. knyga: Fuzzy Filter-Based State of Energy Estimation for Lithium-Ion Batteries

  • Formatas: 140 pages
  • Išleidimo metai: 21-Mar-2024
  • Leidėjas: Cambridge Scholars Publishing
  • ISBN-13: 9781527570672
Fuzzy Filter-Based State of Energy Estimation for Lithium-Ion Batteries
  • Formatas: 140 pages
  • Išleidimo metai: 21-Mar-2024
  • Leidėjas: Cambridge Scholars Publishing
  • ISBN-13: 9781527570672

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Awareness of the safety issues of lithium-ion batteries is crucial in the development of new energy technologies, and real-time and high-precision State of Energy (SOE) estimation is not only a prerequisite for battery safety, but also serves as the basis for predicting the remaining driving range of electric vehicles and aircrafts. In order to achieve real-time and accurate estimation of the energy state of lithium-ion batteries, this book improves the calculation method of the open-circuit voltage in the traditional second-order RC equivalent circuit model. It also combines a fuzzy controller and a dual-weighted multi-innovation algorithm to optimize the traditional Centralized Kalman Filter (CKF) algorithm in terms of the aspects of convergence speed, estimation accuracy, and algorithm robustness. This enables the precise estimation of SOE and the maximum available energy. The content of this book provides theoretical support for the development of new energy initiatives.
Shunli Wang is a professor at Southwest University of Science and Technology, China. His research largely focuses on green and low-carbon energy storage in smart grids, and has won 13 awards including the second prize of the Automation Association, China.Yujie Wang is an associate professor at the University of Science and Technology of China. Wang specializes in research areas such as energy conservation and new energy vehicle technology, battery safety control, and digital twins. Xiao Yang is a doctoral student at Southwest Jiaotong University, China. His research focuses on battery safety management.Carlos Fernandez is a senior lecturer at Robert Gordon University, Scotland. His research interests include analytical chemistry, sensors and materials, and renewable energy.Josep M. Guerrero is a professor at the University of Aalborg, Denmark. His research interests include artificial intelligence based on neuroscience, digital twins, cybersecurity, blockchain and traded energy in maritime, aerospace, and space electrification.