Atnaujinkite slapukų nuostatas

El. knyga: Fuzzy Petri Nets for Knowledge Representation, Acquisition and Reasoning

  • Formatas: EPUB+DRM
  • Išleidimo metai: 19-Sep-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819951543
  • Formatas: EPUB+DRM
  • Išleidimo metai: 19-Sep-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819951543

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides valuable knowledge, useful fuzzy Petri nets (FPN) models, and practical examples that can be considered by mangers in supporting knowledge management of organizations to increase and sustain their competitive advantages. In this book, the authors proposed various improved FPN models to enhance the modeling power and applicability of FPNs in knowledge representation and reasoning. This book is useful for practitioners and researchers working in the fields of knowledge management, operation management, information science, industrial engineering, and management science. It can also be used as a textbook for postgraduate and senior undergraduate students.

Chapter
1. FPNs for knowledge representation and reasoning: A literature review.
Chapter
2. Determining truth degrees of input places in FPNs.
Chapter
3. Bipolar fuzzy Petri nets for knowledge acquisition and representation.
Chapter
4. Picture fuzzy Petri nets for knowledge acquisition and representation.
Chapter
5. R-numbers Petri nets for knowledge acquisition and representation.
Chapter
6. Intuitionistic fuzzy Petri nets for knowledge representation and reasoning.
Chapter
7. Linguistic Z-number Petri nets for knowledge acquisition and representation.
Chapter
8. Linguistic reasoning Petri nets for knowledge representation and reasoning.
Chapter
9. Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning.
Chapter
10. Spherical linguistic Petri nets for knowledge representation and reasoning.
Chapter
11. Two-dimensional uncertain linguistic Petri Net for knowledge representation and reasoning.
Chapter
12. Pythagorean fuzzy Petri nets for knowledge representation and reasoning.
Chapter
13. Grey reasoning Petri nets for knowledge representation and reasoning.
Chapter
14. Cloud reasoning Petri nets for knowledge representation and reasoning.
Chapter
15. Knowledge acquisition and representation using interval-valued intuitionistic fuzzy Petri nets.
Chapter
16. Knowledge acquisition and representation using dynamic adaptive fuzzy Petri nets.
Chapter
17. Fault diagnosis and cause analysis using dynamic adaptive fuzzy Petri nets.
Chapter
18. Failure mode and effects analysis using FPNs.
Chapter
19. Failure mode and effect analysis using probabilistic linguistic Petri nets.
Chapter
20. Failure mode and effect analysis using interval type-2 fuzzy Petri nets.

Hua Shi received the M.S. and Ph.D. degrees in Management Science and Engineering from Shanghai University, Shanghai, China, in 2017 and 2020, respectively. He is currently a lecturer with the School of Materials, Shanghai Dianji University, Shanghai, China. He has authored or coauthored over 30 publications in international journals. His research interests include artificial intelligence, quality and reliability management, and uncertain decision-making.

Hu-Chen Liu received his M.S. degree in industrial engineering from Tongji University, Shanghai, China, in 2010, and his Ph.D. degree in industrial engineering and management from Tokyo Institute of Technology, Tokyo, Japan, in 2013. He is now a distinguished professor at the School of Economics and Management, Tongji University. His main research interests include quality and reliability management, artificial intelligence, and Petri net theory and application. He has published more than 100 publications including 3 books, 90+ journal papers.