Atnaujinkite slapukų nuostatas

El. knyga: Galactic Radio Astronomy

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Physics 935
  • Išleidimo metai: 05-Jun-2017
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811034459
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Physics 935
  • Išleidimo metai: 05-Jun-2017
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811034459

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures.

The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics and dark-matter halos, magnetism of galaxies, interstellar gases in galaxies, and starbursts.

A unique feature of this book is its focus on how to analyze and interpret radio astronomical observation data and how to describe the underlying physics from such data. A wealth of figures and images will be a great help for undergraduate and graduate students to understand the contents. Furthermore, the well-summarized contents of theory and observation will appeal to young researchers as well.


1 Introduction
1.1 Radio Astronomy
1(1)
1.1.1 A History of Radio Astronomy
1(1)
1.2 Radio Emission
2(5)
1.2.1 Plane Waves
2(1)
1.2.2 Acceleration of a Charged Particle and Radiation
3(2)
1.2.3 Radiation from an Electron in a Magnetic Field
5(2)
1.3 Thermal Emission
7(2)
1.3.1 Thermal Bremsstrahlung
7(1)
1.3.2 Thermal Emission and Absorption Coefficient
8(1)
1.4 Synchrotron Radiation: Nonthermal Radiation
9(3)
1.4.1 Emissivity and Spectrum
9(2)
1.4.2 Energy Equipartition
11(1)
1.5 Recombination Lines
12(5)
1.5.1 Frequency
12(1)
1.5.2 Line Width
13(1)
1.5.3 Line Intensity
14(2)
1.5.4 Line to Continuum Intensity Ratio and Temperature Determination
16(1)
1.6 Molecular Lines
17(4)
1.6.1 Frequency
17(2)
1.6.2 Intensity
19(1)
1.6.3 H2 Mass Estimated from the CO Intensity
20(1)
1.6.4 Other Molecules
21(1)
1.7 HI Line
21(5)
1.7.1 Frequency
22(1)
1.7.2 HI Intensity and Column Density
23(2)
1.7.3 HI Volume Density from Brightness Temperature
25(1)
1.8 Radiations from Various Species
26(2)
1.8.1 Molecular Lines
26(1)
1.8.2 HI Line Emission
26(1)
1.8.3 Recombination Lines
26(1)
1.8.4 Free-Free Emission
27(1)
1.8.5 Synchrotron Radiation
27(1)
1.8.6 Black-Body Radiation
27(1)
1.9 Radiative Transfer
28(3)
1.10 Radio Astronomical Observables
31(2)
1.10.1 Observables at the Antenna
31(1)
1.10.2 Physical Observables After Conversion
32(1)
References
32(1)
2 Interstellar Matter
33(24)
2.1 Energy Balance in ISM
33(5)
2.1.1 Energy-Density and Pressure Balance
33(4)
2.1.2 "Activity" in ISM
37(1)
2.2 Molecular Clouds
38(3)
2.2.1 Mass, Size, and Intensity
38(1)
2.2.2 Distribution of Molecular Clouds
39(1)
2.2.3 Giant Molecular Clouds
40(1)
2.2.4 GMC and Star-Forming Sites
40(1)
2.3 The CO-to-H2 Conversion
41(2)
2.3.1 Metallicity Dependence of the Conversion Factor
41(2)
2.3.2 Radial Variation of the Conversion Factor
43(1)
2.4 HI Gas and Clouds
43(2)
2.4.1 Mass, Size, and Intensity of HI Clouds
43(2)
2.4.2 Distribution of HI Gas
45(1)
2.5 HI Versus H2 in the ISM
45(2)
2.5.1 The HI to H2 Transition
45(1)
2.5.2 Molecular Fraction
46(1)
2.6 Galactic Scale HI and CO
47(4)
2.6.1 Galactic HI Gas Distributions
48(1)
2.6.2 Galactic CO (H2) Gas Distribution
48(1)
2.6.3 Central Concentration of CO
49(2)
2.6.4 CO Versus HI in the Position-Velocity (PV) Diagram
51(1)
2.7 Radial Distributions of HI and H2 Densities
51(3)
2.8 Phase Transition Between HI and H2: Molecular Fraction and the Molecular Front
54(3)
2.8.1 Molecular Front
54(1)
2.8.2 Phase Transition Between HI and H2
54(2)
References
56(1)
3 Star Formation and Death
57(44)
3.1 Mechanism of Star Formation
57(17)
3.1.1 Sites of Star Formation
57(1)
3.1.2 Schmidt's Law
58(2)
3.1.3 Birth of Stars
60(1)
3.1.4 Initial Mass Function (IMF)
61(1)
3.1.5 The Virial Theorem
62(1)
3.1.6 Gravitational Contraction of Clouds
63(3)
3.1.7 Jeans Instability
66(2)
3.1.8 Thermal Instability
68(3)
3.1.9 Rayleigh-Taylor Instability
71(1)
3.1.10 Kelvin-Helmholtz Instability
72(1)
3.1.11 Parker Instability (Magnetic Inflation)
73(1)
3.2 Environment of Star Formation
74(6)
3.2.1 Triggering of Cloud Compression
74(1)
3.2.2 Shock Wave
75(3)
3.2.3 Formation of Molecular Clouds
78(1)
3.2.4 Why Spiral Arms Are Bright
78(2)
3.3 HII Regions
80(4)
3.3.1 Ionization Sphere: Strmgren Sphere
80(2)
3.3.2 Expanding Ionization Front
82(2)
3.3.3 Shock Compression of Ambient Gas
84(1)
3.4 Sequential Star Formation
84(4)
3.4.1 Propagation of Shock Compression by an HII Region
84(2)
3.4.2 Various SF Regions
86(2)
3.5 Supernova Remnant
88(13)
3.5.1 Supernovae (SN) and Supernova Remnants (SNR)
88(1)
3.5.2 Classification of SNR
89(2)
3.5.3 Σ --- D Relation and Distribution of SNR
91(1)
3.5.4 Evolution of a SNR
92(2)
3.5.5 Interaction with the ISM
94(2)
3.5.6 Implications of SNRs for Galaxy Evolution
96(3)
References
99(2)
4 Galactic Structure
101(58)
4.1 The Milky Way Galaxy
101(9)
4.1.1 Edge-On View of the Galaxy
101(1)
4.1.2 Distance to the Galactic Center, R0
101(5)
4.1.3 Rotation of the Sun Around the Galactic Center
106(3)
4.1.4 Galactic Rotation Curve
109(1)
4.2 Rotation Curve of the Milky Way
110(3)
4.3 Distribution of ISM
113(9)
4.3.1 (l, ur) and (b, ur) Diagrams
113(1)
4.3.2 Velocity-to-Space Transformation Using a Radial-Velocity Diagram
114(3)
4.3.3 Reliability of Kinematic Distances
117(1)
4.3.4 Face-On View of the Galaxy
117(2)
4.3.5 du/dl Method to Measure Distances to Arms in the GC Direction
119(2)
4.3.6 Spiral Arms in the Milky Way
121(1)
4.4 Density Waves
122(3)
4.4.1 Gravitational Instability of a Disk
122(1)
4.4.2 Pattern Speed
123(1)
4.4.3 Resonances
124(1)
4.5 Galactic Shock Waves
125(5)
4.5.1 Shocked Stream Line
125(2)
4.5.2 Density and Velocity Jumps and Inflow of Gas
127(1)
4.5.3 Determination of Pattern Speed
128(1)
4.5.4 Nuclear Fueling by a Bar
129(1)
4.6 Magnetic and Radio Arms
130(1)
4.7 Rotation of Galaxies
130(6)
4.7.1 Rotation Curves
130(2)
4.7.2 Measurement of Rotation Velocity
132(1)
4.7.3 Rotation Curves and Galaxy Types
133(1)
4.7.4 Radial Mass Distribution for Flat Rotation
133(2)
4.7.5 Mass Distribution Perpendicular to the Disk
135(1)
4.8 Mass Distribution in Galaxies
136(15)
4.8.1 Approximate Mass of the Galaxy
136(2)
4.8.2 Axisymmetric Mass Model
138(1)
4.8.3 Decomposition of Rotation Curve
139(3)
4.8.4 Decomposition by More Empirical Laws
142(1)
4.8.5 Dark Matter Halo
143(1)
4.8.6 Mass Models for Rotation Curve Decompositions
143(5)
4.8.7 Direct Calculation of Mass Distribution from Rotation Curves
148(2)
4.8.8 Velocity Field and Galaxy Warp
150(1)
4.9 Evidence for Dark Matter in Galaxies
151(2)
4.9.1 Flat Rotation Curves
151(1)
4.9.2 Binary Galaxies
152(1)
4.9.3 Virial Mass of a Cluster of Galaxies
152(1)
4.9.4 Dark Matter
152(1)
4.10 Tully-Fisher Relation
153(6)
4.10.1 HI Tully-Fisher Relation
153(1)
4.10.2 CO Versus HI Line Profiles
154(1)
4.10.3 The CO Tully-Fisher Relation: mm-Wave Cosmology
155(1)
References
156(3)
5 The Galactic Center and Activity
159(44)
5.1 Radio Continuum Features
159(4)
5.1.1 Radio Maps
159(1)
5.1.2 Radio Spectrum
160(2)
5.1.3 Linear Polarization and Magnetic Field
162(1)
5.2 Central Disk and Star Formation
163(4)
5.2.1 Sgr B: A Molecular Complex with Star-Forming Region
165(2)
5.3 Molecular Ring
167(2)
5.3.1 120-pc Ring and Sgr B Molecular Complex
167(2)
5.3.2 Face-On View of the 120-pc Ring
169(1)
5.4 Expanding Ring and Parallelogram
169(1)
5.5 Nuclear Supermassive Black Hole at Sgr A*
170(4)
5.5.1 Massive Object in the Galactic Center
170(1)
5.5.2 Sgr A*: A Supermassive Black Hole
171(1)
5.5.3 Black Holes in External Galaxies
172(2)
5.6 Circumnuclear Activities
174(3)
5.6.1 Sgr A Halo and Mini Spirals
174(1)
5.6.2 Thermal Filaments
174(2)
5.6.3 Radio Arc and Vertical Magnetic Fields
176(1)
5.7 Galactic Center Lobe
177(1)
5.8 Vertical Structure
178(1)
5.8.1 Poloidal Fields
178(1)
5.8.2 Molecular Cylinder
179(1)
5.9 Starburst and Nuclear Explosion
179(13)
5.9.1 Bipolar Hypershells in Radio and X-Rays
179(1)
5.9.2 Giant Shock Wave from the GC
180(3)
5.9.3 Definition of Starburst
183(1)
5.9.4 Appearance of a Starburst Galaxy
183(3)
5.9.5 Implication of Starbursts
186(1)
5.9.6 Starburst History in M82
187(1)
5.9.7 CO Observations of M82
188(2)
5.9.8 Comparison with Other Observations
190(2)
5.9.9 NGC 253
192(1)
5.10 Starburst Models
192(11)
5.10.1 Ring-and-Outflowing Cylinder Model
192(3)
5.10.2 Bipolar Hypershell and Super Wind Models
195(1)
5.10.3 Magnetic Model
196(2)
5.10.4 Unified Scenario of Starburst
198(2)
References
200(3)
6 Nonthermal Emission and Magnetic Fields
203(26)
6.1 Synchrotron Emission and Linear Polarization
203(6)
6.1.1 Synchrotron Intensity and Magnetic Field Strength
203(1)
6.1.2 Linearly Polarized Emission
204(1)
6.1.3 Faraday Rotation
205(1)
6.1.4 Determination of Magnetic Field Orientation
206(1)
6.1.5 RM-vs-HI Density Method for Galactic Local Field
207(1)
6.1.6 RM-Gradient Method
208(1)
6.2 Magnetic Fields in the Milky Way
209(4)
6.2.1 Local Magnetic Fields: A Case for Aquila Rift
210(2)
6.2.2 Energetics of the Aquila Rift
212(1)
6.2.3 Parker Instability in the Aquila
213(1)
6.3 Magnetic Fields in Disk Galaxies
213(6)
6.3.1 RM in Disk Galaxies
213(2)
6.3.2 Ring Field in M31
215(1)
6.3.3 BSS Field in M51
216(1)
6.3.4 Vertical Fields in Spiral Galaxies
216(2)
6.3.5 Magnetic Fields in the Galactic Halo
218(1)
6.4 Origin of Magnetic Fields
219(8)
6.4.1 Dynamo Mechanism for Ring and Turbulent Fields
219(3)
6.4.2 Primordial Formation of BSS, Ring/ASS, and Vertical Fields
222(3)
6.4.3 Vertical/Poloidal Magnetic Field
225(1)
6.4.4 Cosmic Jets
226(1)
6.5 Magnetic Fields in Cosmological Scale
227(2)
6.5.1 Intracluster Magnetic Fields
227(1)
6.5.2 Cosmological Magnetism
228(1)
References 229
Yoshiaki Sofue works on theoretical aspects of radio astronomy, galactic astrophysics, galactic dynamics, and interstellar physics. In particular, he focuses on galaxies (specifically the Milky Way Galaxy), galactic center, and interstellar matter. 

Prof. Sofue received his Ph.D. at the Department of Astronomy, The University of Tokyo, in 1973. Between 1968 and 1982 he was a research associate at Nagoya University, the Department of Physics. Between 1982 and 1987 he was an associate professor at the Nobeyama Radio Observatory, The University of Tokyo, and at the Department of Astronomy, The University of Tokyo, between 1987 and 1988. Between 1988 and 2006 he was a full professor at the Institute of Astronomy, The University of Tokyo. During that period he was appointed the Director of the Institute of Astronomy and the Director of Kiso Observatory. In 2006 he became an emeritus professor at The University of Tokyo and in 2007 joined the Department of Physics and Astronomy, Kagoshima University and the Department of Physics, Astronomy Laboratory at Meisei University between 2010 and 2013 as a professor, respectively. From 1976, he frequently joined the Max-Planck-Institute für Radioastronomie as an Alexander von Humboldt fellow, and, notably, was also supported by a Feodor Lynen Research Fellowship in 2007.



Prof. Sofue has served as a member of the Science Council of Japan, and also has contributed to the Astronomical Society of Japan (ASJ) as an Executive Committee member, Council member, Vice President, and President. He was an editor of the Publications of the Astronomical Society of Japan. He joined the Organizing Committee of Division VI of the International Astronomical Union and is currently a member of the International Astronomical Union.