Preface |
|
xvii | |
|
|
|
1.1 The Diversity of the Galaxy Population |
|
|
2 | (3) |
|
1.2 Basic Elements of Galaxy Formation |
|
|
5 | (9) |
|
1.2.1 The Standard Model of Cosmology |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.2.3 Gravitational Instability and Structure Formation |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (2) |
|
1.2.8 Dynamical Evolution |
|
|
12 | (1) |
|
|
12 | (1) |
|
1.2.10 Stellar Population Synthesis |
|
|
13 | (1) |
|
1.2.11 The lntergalactic Medium |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.4 A Brief History of Galaxy Formation |
|
|
15 | (10) |
|
1.4.1 Galaxies as Extragalactic Objects |
|
|
15 | (1) |
|
|
16 | (2) |
|
1.4.3 Structure Formation |
|
|
18 | (2) |
|
1.4.4 The Emergence of the Cold Dark Mailer Paradigm |
|
|
20 | (2) |
|
|
22 | (3) |
|
|
25 | (75) |
|
2.1 Astronomical Observations |
|
|
25 | (9) |
|
2.1.1 Fluxes and Magnitudes |
|
|
26 | (3) |
|
|
29 | (3) |
|
2.1.3 Distance Measurements |
|
|
32 | (2) |
|
|
34 | (3) |
|
|
37 | (24) |
|
2.3.1 The Classification of Galaxies |
|
|
38 | (3) |
|
2.3.2 Elliptical Galaxies |
|
|
41 | (8) |
|
|
49 | (6) |
|
|
55 | (2) |
|
|
57 | (2) |
|
2.3.6 Nuclear Star Clusters |
|
|
59 | (1) |
|
|
60 | (1) |
|
2.3.8 Active Galactic Nuclei |
|
|
60 | (1) |
|
2.4 Statistical Properties of the Galaxy Population |
|
|
61 | (6) |
|
2.4.1 Luminosity Function |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
2.4.4 The Mass---Metallicity Relation |
|
|
65 | (1) |
|
2.4.5 Environment Dependence |
|
|
65 | (2) |
|
2.5 Clusters and Groups of Galaxies |
|
|
67 | (5) |
|
2.5.1 Clusters of Galaxies |
|
|
67 | (4) |
|
|
71 | (1) |
|
2.6 Galaxies at High Redshifts |
|
|
72 | (9) |
|
|
73 | (2) |
|
2.6.2 Photometric Redshifts |
|
|
75 | (1) |
|
2.6.3 Galaxy Redshift Surveys at z ~ 1 |
|
|
75 | (2) |
|
2.6.4 Lyman-Break Galaxies |
|
|
77 | (1) |
|
|
78 | (1) |
|
2.6.6 Submillimeter Sources |
|
|
78 | (1) |
|
2.6.7 Extremely Red Objects and Distant Red Galaxies |
|
|
79 | (1) |
|
2.6.8 The Cosmic Star-Formation History |
|
|
80 | (1) |
|
2.7 Large-Scale Structure |
|
|
81 | (4) |
|
2.7.1 Two-Point Correlation Functions |
|
|
82 | (2) |
|
2.7.2 Probing the Matter Field via Weak Lensing |
|
|
84 | (1) |
|
2.8 The Intergalactic Medium |
|
|
85 | (4) |
|
2.8.1 The Gunn-Peterson Test |
|
|
85 | (1) |
|
2.8.2 Quasar Absorption Line Systems |
|
|
86 | (3) |
|
2.9 The Cosmic Microwave Background |
|
|
89 | (3) |
|
2.10 The Homogeneous and Isotropic Universe |
|
|
92 | (8) |
|
2.10.1 The Determination of Cosmological Parameters |
|
|
94 | (1) |
|
2.10.2 The Mass and Energy Content of the Universe |
|
|
95 | (5) |
|
3 Cosmological Background |
|
|
100 | (62) |
|
3.1 The Cosmological Principle and the Robertson---Walker Metric |
|
|
102 | (10) |
|
3.1.1 The Cosmological Principle and its Consequences |
|
|
102 | (2) |
|
3.1.2 Robertson-Walker Metric |
|
|
104 | (2) |
|
|
106 | (1) |
|
3.1.4 Peculiar Velocities |
|
|
107 | (1) |
|
3.1.5 Thermodynamics and the Equation of State |
|
|
108 | (2) |
|
3.1.6 Angular-Diameter and Luminosity Distances |
|
|
110 | (2) |
|
3.2 Relativistic Cosmology |
|
|
112 | (12) |
|
|
113 | (1) |
|
3.2.2 The Densities at the Present Time |
|
|
114 | (1) |
|
3.2.3 Explicit Solutions of the Friedmann Equation |
|
|
115 | (4) |
|
|
119 | (1) |
|
3.2.5 The Age of the Universe |
|
|
119 | (2) |
|
3.2.6 Cosmological Distances and Volumes |
|
|
121 | (3) |
|
3.3 The Production and Survival of Particles |
|
|
124 | (15) |
|
3.3.1 The Chronology of the Hot Big Bang |
|
|
125 | (2) |
|
3.3.2 Particles in Thermal Equilibrium |
|
|
127 | (2) |
|
|
129 | (3) |
|
3.3.4 Distribution Functions of Decoupled Particle Species |
|
|
132 | (1) |
|
3.3.5 The Freeze-Out of Stable Particles |
|
|
133 | (4) |
|
|
137 | (2) |
|
3.4 Primordial Nucleosynthesis |
|
|
139 | (7) |
|
|
139 | (1) |
|
|
140 | (2) |
|
|
142 | (2) |
|
3.4.4 Observational Results |
|
|
144 | (2) |
|
3.5 Recombination and Decoupling |
|
|
146 | (6) |
|
|
146 | (2) |
|
3.5.2 Decoupling and the Origin of the CMB |
|
|
148 | (2) |
|
|
150 | (1) |
|
3.5.4 Energy Thermalization |
|
|
151 | (1) |
|
|
152 | (10) |
|
3.6.1 The Problems of the Standard Model |
|
|
152 | (2) |
|
3.6.2 The Concept of Inflation |
|
|
154 | (2) |
|
3.6.3 Realization of Inflation |
|
|
156 | (2) |
|
3.6.4 Models of Inflation |
|
|
158 | (4) |
|
4 Cosmological Perturbations |
|
|
162 | (53) |
|
4.1 Newtonian Theory of Small Perturbations |
|
|
162 | (16) |
|
|
162 | (4) |
|
4.1.2 Isentropic and Isocurvature Initial Conditions |
|
|
166 | (1) |
|
4.1.3 Gravitational Instability |
|
|
166 | (2) |
|
|
168 | (3) |
|
4.1.5 Free-Streaming Damping |
|
|
171 | (1) |
|
|
172 | (4) |
|
4.1.7 Higher-Order Perturbation Theory |
|
|
176 | (1) |
|
4.1.8 The Zel'dovich Approximation |
|
|
177 | (1) |
|
4.2 Relativistic Theory of Small Perturbations |
|
|
178 | (18) |
|
|
179 | (2) |
|
4.2.2 Classification of Perturbations |
|
|
181 | (2) |
|
4.2.3 Specific Examples of Gauge Choices |
|
|
183 | (2) |
|
|
185 | (4) |
|
4.2.5 Coupling between Baryons and Radiation |
|
|
189 | (2) |
|
4.2.6 Perturbation Evolution |
|
|
191 | (5) |
|
4.3 Linear Transfer Functions |
|
|
196 | (6) |
|
4.3.1 Adiabatic Baryon Models |
|
|
198 | (2) |
|
4.3.2 Adiabatic Cold Dark Matter Models |
|
|
200 | (1) |
|
4.3.3 Adiabatic Hot Dark Matter Models |
|
|
201 | (1) |
|
4.3.4 Isocurvature Cold Dark Matter Models |
|
|
202 | (1) |
|
4.4 Statistical Properties |
|
|
202 | (7) |
|
|
202 | (2) |
|
4.4.2 Gaussian Random Fields |
|
|
204 | (1) |
|
4.4.3 Simple Non-Gaussian Models |
|
|
205 | (1) |
|
4.4.4 Linear Perturbation Spectrum |
|
|
206 | (3) |
|
4.5 The Origin of Cosmological Perturbations |
|
|
209 | (6) |
|
4.5.1 Perturbations from Inflation |
|
|
209 | (4) |
|
4.5.2 Perturbations from Topological Defects |
|
|
213 | (2) |
|
5 Gravitational Collapse and Collisionless Dynamics |
|
|
215 | (47) |
|
5.1 Spherical Collapse Models |
|
|
215 | (5) |
|
5.1.1 Spherical Collapse in a A = 0 Universe |
|
|
215 | (3) |
|
5.1.2 Spherical Collapse in a Flat Universe with A > 0 |
|
|
218 | (1) |
|
5.1.3 Spherical Collapse with Shell Crossing |
|
|
219 | (1) |
|
5.2 Similarity Solutions for Spherical Collapse |
|
|
220 | (6) |
|
5.2.1 Models with Radial Orbits |
|
|
220 | (4) |
|
5.2.2 Models Including Non-Radial Orbits |
|
|
224 | (2) |
|
5.3 Collapse of Homogeneous Ellipsoids |
|
|
226 | (4) |
|
5.4 Collisionless Dynamics |
|
|
230 | (18) |
|
5.4.1 Time Scales for Collisions |
|
|
230 | (2) |
|
|
232 | (1) |
|
5.4.3 The Jeans Equations |
|
|
233 | (1) |
|
|
234 | (2) |
|
|
236 | (4) |
|
|
240 | (1) |
|
5.4.7 Spherical Equilibrium Models |
|
|
240 | (4) |
|
5.4.8 Axisymmetric Equilibrium Models |
|
|
244 | (3) |
|
5.4.9 Triaxial Equilibrium Models |
|
|
247 | (1) |
|
5.5 Collisionless Relaxation |
|
|
248 | (9) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
251 | (2) |
|
|
253 | (1) |
|
5.5.5 The End State of Relaxation |
|
|
254 | (3) |
|
5.6 Gravitational Collapse of the Cosmic Density Field |
|
|
257 | (5) |
|
5.6.1 Hierarchical Clustering |
|
|
257 | (1) |
|
5.6.2 Results from Numerical Simulations |
|
|
258 | (4) |
|
6 Probing the Cosmic Density Field |
|
|
262 | (57) |
|
6.1 Large-Scale Mass Distribution |
|
|
262 | (8) |
|
6.1.1 Correlation Functions |
|
|
262 | (2) |
|
6.1.2 Particle Sampling and Bias |
|
|
264 | (2) |
|
|
266 | (4) |
|
6.2 Large-Scale Velocity Field |
|
|
270 | (3) |
|
6.2.1 Bulk Motions and Velocity Correlation Functions |
|
|
270 | (1) |
|
6.2.2 Mass Density Reconstruction from the Velocity Field |
|
|
271 | (2) |
|
6.3 Clustering in Real Space and Redshift Space |
|
|
273 | (5) |
|
6.3.1 Redshift Distortions |
|
|
273 | (3) |
|
6.3.2 Real-Space Correlation Functions |
|
|
276 | (2) |
|
|
278 | (5) |
|
6.4.1 Dynamics of Statistics |
|
|
278 | (2) |
|
6.4.2 Self-Similar Gravitational Clustering |
|
|
280 | (2) |
|
6.4.3 Development of Non-Gaussian Features |
|
|
282 | (1) |
|
|
283 | (9) |
|
6.5.1 Correlation Analyses |
|
|
284 | (4) |
|
6.5.2 Power Spectrum Analysis |
|
|
288 | (2) |
|
6.5.3 Angular Correlation Function and Power Spectrum |
|
|
290 | (2) |
|
6.6 Gravitational Lensing |
|
|
292 | (10) |
|
|
292 | (3) |
|
6.6.2 Lensing by a Point Mass |
|
|
295 | (2) |
|
6.6.3 Lensing by an Extended Object |
|
|
297 | (3) |
|
|
300 | (2) |
|
6.7 Fluctuations in the Cosmic Microwave Background |
|
|
302 | (17) |
|
6.7.1 Observational Quantities |
|
|
302 | (2) |
|
6.7.2 Theoretical Expectations of Temperature Anisotropy |
|
|
304 | (7) |
|
6.7.3 Thomson Scattering and Polarization of the Microwave Background |
|
|
311 | (3) |
|
6.7.4 Interaction between CMB Photons and Matter |
|
|
314 | (2) |
|
6.7.5 Constraints on Cosmological Parameters |
|
|
316 | (3) |
|
7 Formation and Structure of Dark Matter Halos |
|
|
319 | (47) |
|
|
321 | (5) |
|
7.1.1 Peak Number Density |
|
|
321 | (2) |
|
7.1.2 Spatial Modulation of the Peak Number Density |
|
|
323 | (1) |
|
7.1.3 Correlation Function |
|
|
324 | (1) |
|
7.1.4 Shapes of Density Peaks |
|
|
325 | (1) |
|
|
326 | (10) |
|
7.2.1 Press-Schechter Formalism |
|
|
327 | (1) |
|
7.2.2 Excursion Set Derivation of the Press-Schechter Formula |
|
|
328 | (3) |
|
7.2.3 Spherical versus Ellipsoidal Dynamics |
|
|
331 | (2) |
|
7.2.4 Tests of the Press-Schechter Formalism |
|
|
333 | (1) |
|
7.2.5 Number Density of Galaxy Clusters |
|
|
334 | (2) |
|
7.3 Progenitor Distributions and Merger Trees |
|
|
336 | (9) |
|
7.3.1 Progenitors of Dark Matter Halos |
|
|
336 | (1) |
|
|
336 | (3) |
|
7.3.3 Main Progenitor Histories |
|
|
339 | (1) |
|
7.3.4 Halo Assembly and Formation Times |
|
|
340 | (2) |
|
|
342 | (1) |
|
7.3.6 Halo Survival Times |
|
|
343 | (2) |
|
7.4 Spatial Clustering and Bias |
|
|
345 | (6) |
|
7.4.1 Linear Bias and Correlation Function |
|
|
345 | (3) |
|
|
348 | (1) |
|
7.4.3 Nonlinear and Stochastic Bias |
|
|
348 | (3) |
|
7.5 Internal Structure of Dark Matter Halos |
|
|
351 | (11) |
|
7.5.1 Halo Density Profiles |
|
|
351 | (3) |
|
|
354 | (1) |
|
|
355 | (3) |
|
|
358 | (4) |
|
7.6 The Halo Model of Dark Matter Clustering |
|
|
362 | (4) |
|
8 Formation and Evolution of Gaseous Halos |
|
|
366 | (51) |
|
8.1 Basic Fluid Dynamics and Radiative Processes |
|
|
366 | (5) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
367 | (2) |
|
8.1.4 Photoionization Heating |
|
|
369 | (2) |
|
8.2 Hydrostatic Equilibrium |
|
|
371 | (5) |
|
8.2.1 Gas Density Profile |
|
|
371 | (2) |
|
8.2.2 Convective Instability |
|
|
373 | (1) |
|
8.2.3 Virial Theorem Applied to a Gaseous Halo |
|
|
374 | (2) |
|
8.3 The Formation of Hot Gaseous Halos |
|
|
376 | (9) |
|
|
376 | (3) |
|
8.3.2 Self-Similar Collapse of Collisional Gas |
|
|
379 | (4) |
|
8.3.3 The Impact of a Collisionless Component |
|
|
383 | (1) |
|
8.3.4 More General Models of Spherical Collapse |
|
|
384 | (1) |
|
8.4 Radiative Cooling in Gaseous Halos |
|
|
385 | (8) |
|
8.4.1 Radiative Cooling Time Scales for Uniform Clouds |
|
|
385 | (2) |
|
8.4.2 Evolution of the Cooling Radius |
|
|
387 | (1) |
|
8.4.3 Self-Similar Cooling Waves |
|
|
388 | (2) |
|
8.4.4 Spherical Collapse with Cooling |
|
|
390 | (3) |
|
8.5 Thermal and Hydrodynamical Instabilities of Cooling Gas |
|
|
393 | (5) |
|
8.5.1 Thermal Instability |
|
|
393 | (3) |
|
8.5.2 Hydrodynamical Instabilities |
|
|
396 | (1) |
|
|
397 | (1) |
|
8.6 Evolution of Gaseous Halos with Energy Sources |
|
|
398 | (10) |
|
|
399 | (5) |
|
8.6.2 Winds and Wind-Driven Bubbles |
|
|
404 | (2) |
|
8.6.3 Supernova Feedback and Galaxy Formation |
|
|
406 | (2) |
|
8.7 Results from Numerical Simulations |
|
|
408 | (2) |
|
8.7.1 Three-Dimensional Collapse without Radiative Cooling |
|
|
408 | (1) |
|
8.7.2 Three-Dimensional Collapse with Radiative Cooling |
|
|
409 | (1) |
|
|
410 | (7) |
|
8.8.1 X-ray Clusters and Groups |
|
|
410 | (4) |
|
8.8.2 Gaseous Halos around Elliptical Galaxies |
|
|
414 | (2) |
|
8.8.3 Gaseous Halos around Spiral Galaxies |
|
|
416 | (1) |
|
9 Star Formation in Galaxies |
|
|
417 | (32) |
|
9.1 Giant Molecular Clouds: The Sites of Star Formation |
|
|
418 | (3) |
|
9.1.1 Observed Properties |
|
|
418 | (1) |
|
|
419 | (2) |
|
9.2 The Formation of Giant Molecular Clouds |
|
|
421 | (4) |
|
9.2.1 The Formation of Molecular Hydrogen |
|
|
421 | (1) |
|
|
422 | (3) |
|
9.3 What Controls the Star-Formation Efficiency |
|
|
425 | (4) |
|
|
425 | (1) |
|
9.3.2 Supersonic Turbulence |
|
|
426 | (2) |
|
|
428 | (1) |
|
9.4 The Formation of Individual Stars |
|
|
429 | (4) |
|
9.4.1 The Formation of Low-Mass Stars |
|
|
429 | (3) |
|
9.4.2 The Formation of Massive Stars |
|
|
432 | (1) |
|
9.5 Empirical Star-Formation Laws |
|
|
433 | (7) |
|
9.5.1 The Kennicutt-Schmidt Law |
|
|
434 | (2) |
|
9.5.2 Local Star-Formation Laws |
|
|
436 | (2) |
|
9.5.3 Star-Formation Thresholds |
|
|
438 | (2) |
|
9.6 The Initial Mass Function |
|
|
440 | (6) |
|
9.6.1 Observational Constraints |
|
|
441 | (2) |
|
|
443 | (3) |
|
9.7 The Formation of Population III Stars |
|
|
446 | (3) |
|
10 Stellar Populations and Chemical Evolution |
|
|
449 | (46) |
|
10.1 The Basic Concepts of Stellar Evolution |
|
|
449 | (14) |
|
10.1.1 Basic Equations of Stellar Structure |
|
|
450 | (3) |
|
|
453 | (1) |
|
10.1.3 Equation of State, Opacity, and Energy Production |
|
|
453 | (7) |
|
|
460 | (2) |
|
10.1.5 Main-Sequence Lifetimes |
|
|
462 | (1) |
|
10.2 Stellar Evolutionary Tracks |
|
|
463 | (7) |
|
10.2.1 Pre-Main-Sequence Evolution |
|
|
463 | (1) |
|
10.2.2 Post-Main-Sequence Evolution |
|
|
464 | (4) |
|
10.2.3 Supernova Progenitors and Rates |
|
|
468 | (2) |
|
10.3 Stellar Population Synthesis |
|
|
470 | (16) |
|
|
470 | (1) |
|
10.3.2 Spectral Synthesis |
|
|
471 | (1) |
|
|
472 | (2) |
|
|
474 | (1) |
|
10.3.5 Age---Metallicity Degeneracy |
|
|
475 | (1) |
|
10.3.6 K and E Corrections |
|
|
475 | (1) |
|
10.3.7 Emission and Absorption by the Interstellar Medium |
|
|
476 | (6) |
|
10.3.8 Star-Formation Diagnostics |
|
|
482 | (2) |
|
10.3.9 Estimating Stellar Masses and Star-Formation Histories of Galaxies |
|
|
484 | (2) |
|
10.4 Chemical Evolution of Galaxies |
|
|
486 | (6) |
|
10.4.1 Stellar Chemical Production |
|
|
486 | (2) |
|
10.4.2 The Closed-Box Model |
|
|
488 | (2) |
|
10.4.3 Models with Inflow and Outflow |
|
|
490 | (1) |
|
|
491 | (1) |
|
10.5 Stellar Energetic Feedback |
|
|
492 | (3) |
|
10.5.1 Mass-Loaded Kinetic Energy from Stars |
|
|
492 | (1) |
|
10.5.2 Gas Dynamics Including Stellar Feedback |
|
|
493 | (2) |
|
|
495 | (49) |
|
11.1 Mass Components and Angular Momentum |
|
|
495 | (10) |
|
|
496 | (2) |
|
|
498 | (3) |
|
11.1.3 Adiabatic Contraction |
|
|
501 | (1) |
|
11.1.4 Disk Angular Momentum |
|
|
502 | (1) |
|
11.1.5 Orbits in Disk Galaxies |
|
|
503 | (2) |
|
11.2 The Formation of Disk Galaxies |
|
|
505 | (7) |
|
11.2.1 General Discussion |
|
|
505 | (1) |
|
11.2.2 Non-Self-Gravitating Disks in Isothermal Spheres |
|
|
505 | (2) |
|
11.2.3 Self-Gravitating Disks in Halos with Realistic Profiles |
|
|
507 | (2) |
|
11.2.4 Including a Bulge Component |
|
|
509 | (1) |
|
|
509 | (2) |
|
11.2.6 Numerical Simulations of Disk Formation |
|
|
511 | (1) |
|
11.3 The Origin of Disk Galaxy Scaling Relations |
|
|
512 | (3) |
|
11.4 The Origin of Exponential Disks |
|
|
515 | (6) |
|
11.4.1 Disks from Relic Angular Momentum Distribution |
|
|
515 | (2) |
|
|
517 | (1) |
|
11.4.3 The Vertical Structure of Disk Galaxies |
|
|
518 | (3) |
|
|
521 | (10) |
|
|
521 | (2) |
|
|
523 | (2) |
|
11.5.3 Global Instability |
|
|
525 | (3) |
|
|
528 | (3) |
|
11.6 The Formation of Spiral Arms |
|
|
531 | (3) |
|
11.7 Stellar Population Properties |
|
|
534 | (4) |
|
|
535 | (2) |
|
|
537 | (1) |
|
11.8 Chemical Evolution of Disk Galaxies |
|
|
538 | (6) |
|
11.8.1 The Solar Neighborhood |
|
|
538 | (2) |
|
|
540 | (4) |
|
12 Galaxy Interactions and Transformations |
|
|
544 | (30) |
|
12.1 High-Speed Encounters |
|
|
545 | (3) |
|
|
548 | (5) |
|
|
548 | (1) |
|
12.2.2 Tidal Streams and Tails |
|
|
549 | (4) |
|
|
553 | (8) |
|
|
556 | (3) |
|
12.3.2 The Validity of Chandrasekhar's Formula |
|
|
559 | (2) |
|
|
561 | (7) |
|
12.4.1 Criterion for Mergers |
|
|
561 | (2) |
|
12.4.2 Merger Demographics |
|
|
563 | (1) |
|
12.4.3 The Connection between Mergers, Starbursts and AGN |
|
|
564 | (1) |
|
12.4.4 Minor Mergers and Disk Heating |
|
|
565 | (3) |
|
12.5 Transformation of Galaxies in Clusters |
|
|
568 | (6) |
|
|
569 | (1) |
|
12.5.2 Galactic Cannibalism |
|
|
570 | (1) |
|
12.5.3 Ram-Pressure Stripping |
|
|
571 | (1) |
|
|
572 | (2) |
|
|
574 | (44) |
|
13.1 Structure and Dynamics |
|
|
574 | (13) |
|
|
575 | (1) |
|
13.1.2 Photometric Properties |
|
|
576 | (1) |
|
13.1.3 Kinematic Properties |
|
|
577 | (2) |
|
13.1.4 Dynamical Modeling |
|
|
579 | (2) |
|
13.1.5 Evidence for Dark Halos |
|
|
581 | (1) |
|
13.1.6 Evidence for Supermassive Black Holes |
|
|
582 | (2) |
|
|
584 | (3) |
|
13.2 The Formation of Elliptical Galaxies |
|
|
587 | (7) |
|
13.2.1 The Monolithic Collapse Scenario |
|
|
588 | (2) |
|
13.2.2 The Merger Scenario |
|
|
590 | (3) |
|
13.2.3 Hierarchical Merging and the Elliptical Population |
|
|
593 | (1) |
|
13.3 Observational Tests and Constraints |
|
|
594 | (8) |
|
13.3.1 Evolution of the Number Density of Ellipticals |
|
|
594 | (1) |
|
13.3.2 The Sizes of Elliptical Galaxies |
|
|
595 | (3) |
|
13.3.3 Phase-Space Density Constraints |
|
|
598 | (1) |
|
13.3.4 The Specific Frequency of Globular Clusters |
|
|
599 | (1) |
|
13.3.5 Merging Signatures |
|
|
600 | (1) |
|
|
601 | (1) |
|
13.4 The Fundamental Plane of Elliptical Galaxies |
|
|
602 | (4) |
|
13.4.1 The Fundamental Plane in the Merger Scenario |
|
|
604 | (1) |
|
13.4.2 Projections and Rotations of the Fundamental Plane |
|
|
604 | (2) |
|
13.5 Stellar Population Properties |
|
|
606 | (7) |
|
13.5.1 Archaeological Records |
|
|
606 | (3) |
|
13.5.2 Evolutionary Probes |
|
|
609 | (1) |
|
13.5.3 Color and Metallicity Gradients |
|
|
610 | (1) |
|
13.5.4 Implications for the Formation of Elliptical Galaxies |
|
|
610 | (3) |
|
13.6 Bulges, Dwarf Ellipticals and Dwarf Spheroidals |
|
|
613 | (5) |
|
13.6.1 The Formation of Galactic Bulges |
|
|
614 | (2) |
|
13.6.2 The Formation of Dwarf Ellipticals |
|
|
616 | (2) |
|
|
618 | (34) |
|
14.1 The Population of Active Galactic Nuclei |
|
|
619 | (4) |
|
14.2 The Supermassive Black Hole Paradigm |
|
|
623 | (17) |
|
14.2.1 The Central Engine |
|
|
623 | (1) |
|
|
624 | (2) |
|
14.2.3 Continuum Emission |
|
|
626 | (5) |
|
|
631 | (2) |
|
14.2.5 Jets, Superluminal Motion and Beaming |
|
|
633 | (4) |
|
14.2.6 Emission-Line Regions and Obscuring Torus |
|
|
637 | (1) |
|
14.2.7 The Idea of Unification |
|
|
638 | (1) |
|
14.2.8 Observational Tests for Supermassive Black Holes |
|
|
639 | (1) |
|
14.3 The Formation and Evolution of AGN |
|
|
640 | (8) |
|
14.3.1 The Growth of Supermassive Black Holes and the Fueling of AGN |
|
|
640 | (4) |
|
|
644 | (3) |
|
14.3.3 Outstanding Questions |
|
|
647 | (1) |
|
14.4 AGN and Galaxy Formation |
|
|
648 | (4) |
|
14.4.1 Radiative Feedback |
|
|
649 | (1) |
|
14.4.2 Mechanical Feedback |
|
|
650 | (2) |
|
15 Statistical Properties of the Galaxy Population |
|
|
652 | (37) |
|
|
652 | (2) |
|
15.2 Galaxy Luminosities and Stellar Masses |
|
|
654 | (9) |
|
15.2.1 Galaxy Luminosity Functions |
|
|
654 | (4) |
|
|
658 | (2) |
|
15.2.3 Extragalactic Background Light |
|
|
660 | (3) |
|
15.3 Linking Halo Mass to Galaxy Luminosity |
|
|
663 | (7) |
|
15.3.1 Simple Considerations |
|
|
663 | (2) |
|
15.3.2 The Luminosity Function of Central Galaxies |
|
|
665 | (1) |
|
15.3.3 The Luminosity Function of Satellite Galaxies |
|
|
666 | (2) |
|
15.3.4 Satellite Fractions |
|
|
668 | (1) |
|
|
669 | (1) |
|
15.4 Linking Halo Mass to Star-Formation History |
|
|
670 | (4) |
|
15.4.1 The Color Distribution of Galaxies |
|
|
670 | (3) |
|
15.4.2 Origin of the Cosmic Star-Formation History |
|
|
673 | (1) |
|
15.5 Environmental Dependence |
|
|
674 | (5) |
|
15.5.1 Effects within Dark Matter Halos |
|
|
675 | (2) |
|
15.5.2 Effects on Large Scales |
|
|
677 | (2) |
|
15.6 Spatial Clustering and Galaxy Bias |
|
|
679 | (5) |
|
15.6.1 Application to High-Redshift Galaxies |
|
|
683 | (1) |
|
15.7 Putting it All Together |
|
|
684 | (5) |
|
15.7.1 Semi-Analytical Models |
|
|
684 | (2) |
|
15.7.2 Hydrodynamical Simulations |
|
|
686 | (3) |
|
16 The Intergalactic Medium |
|
|
689 | (52) |
|
16.1 The Ionization State of the Intergalactic Medium |
|
|
690 | (5) |
|
16.1.1 Physical Conditions after Recombination |
|
|
690 | (1) |
|
16.1.2 The Mean Optical Depth of the IGM |
|
|
690 | (2) |
|
16.1.3 The Gunn-Peterson Test |
|
|
692 | (2) |
|
16.1.4 Constraints from the Cosmic Microwave Background |
|
|
694 | (1) |
|
|
695 | (7) |
|
16.2.1 Photoionization versus Collisional Ionization |
|
|
695 | (2) |
|
16.2.2 Emissivity from Quasars and Young Galaxies |
|
|
697 | (2) |
|
16.2.3 Attenuation by Intervening Absorbers |
|
|
699 | (2) |
|
16.2.4 Observational Constraints on the UV Background |
|
|
701 | (1) |
|
16.3 The Evolution of the Intergalactic Medium |
|
|
702 | (7) |
|
|
702 | (2) |
|
16.3.2 Ionization Evolution |
|
|
704 | (1) |
|
16.3.3 The Epoch of Re-ionization |
|
|
705 | (2) |
|
16.3.4 Probing Re-ionization with 21-cm Emission and Absorption |
|
|
707 | (2) |
|
16.4 General Properties of Absorption Lines |
|
|
709 | (5) |
|
16.4.1 Distribution Function |
|
|
709 | (1) |
|
16.4.2 Thermal Broadening |
|
|
710 | (1) |
|
16.4.3 Natural Broadening and Voigt Profiles |
|
|
711 | (1) |
|
16.4.4 Equivalent Width and Column Density |
|
|
712 | (2) |
|
16.4.5 Common QSO Absorption Line Systems |
|
|
714 | (1) |
|
16.4.6 Photoionization Models |
|
|
714 | (1) |
|
|
714 | (9) |
|
16.5.1 Redshift Evolution |
|
|
715 | (1) |
|
16.5.2 Column Density Distribution |
|
|
716 | (1) |
|
|
717 | (1) |
|
16.5.4 Sizes of Absorbers |
|
|
718 | (1) |
|
|
719 | (1) |
|
|
720 | (1) |
|
16.5.7 Lyman α Forests at Low Redshift |
|
|
721 | (1) |
|
16.5.8 The Helium Lyman a Forest |
|
|
722 | (1) |
|
16.6 Models of the Lyman α Forest |
|
|
723 | (9) |
|
|
723 | (1) |
|
16.6.2 Lyman α Forest in Hierarchical Models |
|
|
724 | (7) |
|
16.6.3 Lyman α Forest in Hydrodynamical Simulations |
|
|
731 | (1) |
|
|
732 | (1) |
|
16.8 Damped Lyman α Systems |
|
|
733 | (5) |
|
16.8.1 Column Density Distribution |
|
|
734 | (1) |
|
16.8.2 Redshift Evolution |
|
|
734 | (2) |
|
|
736 | (2) |
|
|
738 | (1) |
|
16.9 Metal Absorption Line Systems |
|
|
738 | (3) |
|
|
739 | (1) |
|
16.9.2 CIV and OVI Systems |
|
|
740 | (1) |
|
A Basics of General Relativity |
|
|
741 | (7) |
|
|
741 | (2) |
|
A1.2 The Equivalence Principle |
|
|
743 | (1) |
|
|
744 | (2) |
|
A1.4 Energy-Momentum Tensor |
|
|
746 | (1) |
|
|
747 | (1) |
|
A1.6 Einstein's Field Equation |
|
|
747 | (1) |
|
B Gas and Radiative Processes |
|
|
748 | (16) |
|
|
748 | (1) |
|
|
749 | (2) |
|
|
751 | (9) |
|
B1.3.1 Einstein Coefficients and Milne Relation |
|
|
752 | (3) |
|
B1.3.2 Photoionization and Photo-excitation |
|
|
755 | (1) |
|
|
756 | (1) |
|
B1.3.4 Collisional Ionization and Collisional Excitation |
|
|
757 | (1) |
|
|
758 | (1) |
|
B1.3.6 Compton Scattering |
|
|
759 | (1) |
|
|
760 | (4) |
|
|
764 | (11) |
|
|
764 | (6) |
|
C1.1.1 Force Calculations |
|
|
766 | (1) |
|
C1.1.2 Issues Related to Numerical Accuracy |
|
|
767 | (2) |
|
C1.1.3 Boundary Conditions |
|
|
769 | (1) |
|
C1.1.4 Initial Conditions |
|
|
769 | (1) |
|
C1.2 Hydrodynamical Simulations |
|
|
770 | (5) |
|
C1.2.1 Smoothed-Particle Hydrodynamics (SPH) |
|
|
770 | (2) |
|
C1.2.2 Grid-Based Algorithms |
|
|
772 | (3) |
|
D Frequently Used Abbreviations |
|
|
775 | (1) |
|
|
776 | |
References |
|
111 | (695) |
Index |
|
806 | |