Atnaujinkite slapukų nuostatas

El. knyga: Galaxy Formation and Evolution

4.53/5 (37 ratings by Goodreads)
(University of Massachusetts, Amherst), , (Yale University, Connecticut)
  • Formatas: PDF+DRM
  • Išleidimo metai: 20-May-2010
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9780511731082
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 20-May-2010
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9780511731082
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies"--Provided by publisher.

"This book is concerned with the physical processes related to the formation and evolution of galaxies. Simply put, a galaxy is a dynamically bound system that consists of many stars"--Provided by publisher.

The rapidly expanding field of galaxy formation lies atthe interfaces of astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field.

Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium.

Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

Jointly and separately, the authors have published almost 500 papers in the refereed professional literature, most of them on topics related to the subject of this book.

Recenzijos

'Mo, van den Bosch, and White have written a comprehensive text on the modern subject of galaxy formation and evolution. The book is fully self-contained, covering the basic theory in depth, and including the essential background material on observations and the relevant theory from extragalactic astronomy, stellar astrophysics, and cosmology. It will serve as an indispensable reference for students and researchers alike, and is destined to become a classic in this field.' Robert C. Kennicutt, Jr, Plumian Professor of Astronomy and Experimental Philosophy, and Director, Institute of Astronomy, University of Cambridge 'Unraveling the origin and growth of cosmic structures, from the simplicity of the Big Bang to the complexity of the modern Universe, is an unparalleled achievement of modern science. Written by renowned world experts, this book presents a clear, systematic and comprehensive exposition of the physics and mathematics underlying these breathtaking advances. It is compulsory reading not only for those aspiring to contribute to our growing understanding of the cosmos, but for all those who appreciate the beauty and power of contemporary physical science.' Carlos S. Frenk, Ogden Professor of Fundamental Physics, and Director, Institute for Computational Cosmology, Durham University ' an ideal introduction for anyone with a minimal background in astrophysics who wishes to enter the field of large-scale structure formation. a comprehensive review of relevant topics ' Physics Today

Daugiau informacijos

Winner of PROSE (Cosmology/Astronomy) 2010.A coherent introduction for researchers in astronomy, particle physics, and cosmology on the formation and evolution of galaxies.
Preface xvii
1 Introduction
1.1 The Diversity of the Galaxy Population
2(3)
1.2 Basic Elements of Galaxy Formation
5(9)
1.2.1 The Standard Model of Cosmology
6(1)
1.2.2 Initial Conditions
6(1)
1.2.3 Gravitational Instability and Structure Formation
7(1)
1.2.4 Gas Cooling
8(1)
1.2.5 Star Formation
8(1)
1.2.6 Feedback Processes
9(1)
1.2.7 Mergers
10(2)
1.2.8 Dynamical Evolution
12(1)
1.2.9 Chemical Evolution
12(1)
1.2.10 Stellar Population Synthesis
13(1)
1.2.11 The lntergalactic Medium
13(1)
1.3 Time Scales
14(1)
1.4 A Brief History of Galaxy Formation
15(10)
1.4.1 Galaxies as Extragalactic Objects
15(1)
1.4.2 Cosmology
16(2)
1.4.3 Structure Formation
18(2)
1.4.4 The Emergence of the Cold Dark Mailer Paradigm
20(2)
1.4.5 Galaxy Formation
22(3)
2 Observational Facts
25(75)
2.1 Astronomical Observations
25(9)
2.1.1 Fluxes and Magnitudes
26(3)
2.1.2 Spectroscopy
29(3)
2.1.3 Distance Measurements
32(2)
2.2 Stars
34(3)
2.3 Galaxies
37(24)
2.3.1 The Classification of Galaxies
38(3)
2.3.2 Elliptical Galaxies
41(8)
2.3.3 Disk Galaxies
49(6)
2.3.4 The Milky Way
55(2)
2.3.5 Dwarf Galaxies
57(2)
2.3.6 Nuclear Star Clusters
59(1)
2.3.7 Starbursts
60(1)
2.3.8 Active Galactic Nuclei
60(1)
2.4 Statistical Properties of the Galaxy Population
61(6)
2.4.1 Luminosity Function
62(1)
2.4.2 Size Distribution
63(1)
2.4.3 Color Distribution
64(1)
2.4.4 The Mass---Metallicity Relation
65(1)
2.4.5 Environment Dependence
65(2)
2.5 Clusters and Groups of Galaxies
67(5)
2.5.1 Clusters of Galaxies
67(4)
2.5.2 Groups of Galaxies
71(1)
2.6 Galaxies at High Redshifts
72(9)
2.6.1 Galaxy Counts
73(2)
2.6.2 Photometric Redshifts
75(1)
2.6.3 Galaxy Redshift Surveys at z ~ 1
75(2)
2.6.4 Lyman-Break Galaxies
77(1)
2.6.5 Lyα Emitters
78(1)
2.6.6 Submillimeter Sources
78(1)
2.6.7 Extremely Red Objects and Distant Red Galaxies
79(1)
2.6.8 The Cosmic Star-Formation History
80(1)
2.7 Large-Scale Structure
81(4)
2.7.1 Two-Point Correlation Functions
82(2)
2.7.2 Probing the Matter Field via Weak Lensing
84(1)
2.8 The Intergalactic Medium
85(4)
2.8.1 The Gunn-Peterson Test
85(1)
2.8.2 Quasar Absorption Line Systems
86(3)
2.9 The Cosmic Microwave Background
89(3)
2.10 The Homogeneous and Isotropic Universe
92(8)
2.10.1 The Determination of Cosmological Parameters
94(1)
2.10.2 The Mass and Energy Content of the Universe
95(5)
3 Cosmological Background
100(62)
3.1 The Cosmological Principle and the Robertson---Walker Metric
102(10)
3.1.1 The Cosmological Principle and its Consequences
102(2)
3.1.2 Robertson-Walker Metric
104(2)
3.1.3 Redshift
106(1)
3.1.4 Peculiar Velocities
107(1)
3.1.5 Thermodynamics and the Equation of State
108(2)
3.1.6 Angular-Diameter and Luminosity Distances
110(2)
3.2 Relativistic Cosmology
112(12)
3.2.1 Friedmann Equation
113(1)
3.2.2 The Densities at the Present Time
114(1)
3.2.3 Explicit Solutions of the Friedmann Equation
115(4)
3.2.4 Horizons
119(1)
3.2.5 The Age of the Universe
119(2)
3.2.6 Cosmological Distances and Volumes
121(3)
3.3 The Production and Survival of Particles
124(15)
3.3.1 The Chronology of the Hot Big Bang
125(2)
3.3.2 Particles in Thermal Equilibrium
127(2)
3.3.3 Entropy
129(3)
3.3.4 Distribution Functions of Decoupled Particle Species
132(1)
3.3.5 The Freeze-Out of Stable Particles
133(4)
3.3.6 Decaying Particles
137(2)
3.4 Primordial Nucleosynthesis
139(7)
3.4.1 Initial Conditions
139(1)
3.4.2 Nuclear Reactions
140(2)
3.4.3 Model Predictions
142(2)
3.4.4 Observational Results
144(2)
3.5 Recombination and Decoupling
146(6)
3.5.1 Recombination
146(2)
3.5.2 Decoupling and the Origin of the CMB
148(2)
3.5.3 Compton Scattering
150(1)
3.5.4 Energy Thermalization
151(1)
3.6 Inflation
152(10)
3.6.1 The Problems of the Standard Model
152(2)
3.6.2 The Concept of Inflation
154(2)
3.6.3 Realization of Inflation
156(2)
3.6.4 Models of Inflation
158(4)
4 Cosmological Perturbations
162(53)
4.1 Newtonian Theory of Small Perturbations
162(16)
4.1.1 Ideal Fluid
162(4)
4.1.2 Isentropic and Isocurvature Initial Conditions
166(1)
4.1.3 Gravitational Instability
166(2)
4.1.4 Collisionless Gas
168(3)
4.1.5 Free-Streaming Damping
171(1)
4.1.6 Specific Solutions
172(4)
4.1.7 Higher-Order Perturbation Theory
176(1)
4.1.8 The Zel'dovich Approximation
177(1)
4.2 Relativistic Theory of Small Perturbations
178(18)
4.2.1 Gauge Freedom
179(2)
4.2.2 Classification of Perturbations
181(2)
4.2.3 Specific Examples of Gauge Choices
183(2)
4.2.4 Basic Equations
185(4)
4.2.5 Coupling between Baryons and Radiation
189(2)
4.2.6 Perturbation Evolution
191(5)
4.3 Linear Transfer Functions
196(6)
4.3.1 Adiabatic Baryon Models
198(2)
4.3.2 Adiabatic Cold Dark Matter Models
200(1)
4.3.3 Adiabatic Hot Dark Matter Models
201(1)
4.3.4 Isocurvature Cold Dark Matter Models
202(1)
4.4 Statistical Properties
202(7)
4.4.1 General Discussion
202(2)
4.4.2 Gaussian Random Fields
204(1)
4.4.3 Simple Non-Gaussian Models
205(1)
4.4.4 Linear Perturbation Spectrum
206(3)
4.5 The Origin of Cosmological Perturbations
209(6)
4.5.1 Perturbations from Inflation
209(4)
4.5.2 Perturbations from Topological Defects
213(2)
5 Gravitational Collapse and Collisionless Dynamics
215(47)
5.1 Spherical Collapse Models
215(5)
5.1.1 Spherical Collapse in a A = 0 Universe
215(3)
5.1.2 Spherical Collapse in a Flat Universe with A > 0
218(1)
5.1.3 Spherical Collapse with Shell Crossing
219(1)
5.2 Similarity Solutions for Spherical Collapse
220(6)
5.2.1 Models with Radial Orbits
220(4)
5.2.2 Models Including Non-Radial Orbits
224(2)
5.3 Collapse of Homogeneous Ellipsoids
226(4)
5.4 Collisionless Dynamics
230(18)
5.4.1 Time Scales for Collisions
230(2)
5.4.2 Basic Dynamics
232(1)
5.4.3 The Jeans Equations
233(1)
5.4.4 The Virial Theorem
234(2)
5.4.5 Orbit Theory
236(4)
5.4.6 The Jeans Theorem
240(1)
5.4.7 Spherical Equilibrium Models
240(4)
5.4.8 Axisymmetric Equilibrium Models
244(3)
5.4.9 Triaxial Equilibrium Models
247(1)
5.5 Collisionless Relaxation
248(9)
5.5.1 Phase Mixing
249(1)
5.5.2 Chaotic Mixing
250(1)
5.5.3 Violent Relaxation
251(2)
5.5.4 Landau Damping
253(1)
5.5.5 The End State of Relaxation
254(3)
5.6 Gravitational Collapse of the Cosmic Density Field
257(5)
5.6.1 Hierarchical Clustering
257(1)
5.6.2 Results from Numerical Simulations
258(4)
6 Probing the Cosmic Density Field
262(57)
6.1 Large-Scale Mass Distribution
262(8)
6.1.1 Correlation Functions
262(2)
6.1.2 Particle Sampling and Bias
264(2)
6.1.3 Mass Moments
266(4)
6.2 Large-Scale Velocity Field
270(3)
6.2.1 Bulk Motions and Velocity Correlation Functions
270(1)
6.2.2 Mass Density Reconstruction from the Velocity Field
271(2)
6.3 Clustering in Real Space and Redshift Space
273(5)
6.3.1 Redshift Distortions
273(3)
6.3.2 Real-Space Correlation Functions
276(2)
6.4 Clustering Evolution
278(5)
6.4.1 Dynamics of Statistics
278(2)
6.4.2 Self-Similar Gravitational Clustering
280(2)
6.4.3 Development of Non-Gaussian Features
282(1)
6.5 Galaxy Clustering
283(9)
6.5.1 Correlation Analyses
284(4)
6.5.2 Power Spectrum Analysis
288(2)
6.5.3 Angular Correlation Function and Power Spectrum
290(2)
6.6 Gravitational Lensing
292(10)
6.6.1 Basic Equations
292(3)
6.6.2 Lensing by a Point Mass
295(2)
6.6.3 Lensing by an Extended Object
297(3)
6.6.4 Cosmic Shear
300(2)
6.7 Fluctuations in the Cosmic Microwave Background
302(17)
6.7.1 Observational Quantities
302(2)
6.7.2 Theoretical Expectations of Temperature Anisotropy
304(7)
6.7.3 Thomson Scattering and Polarization of the Microwave Background
311(3)
6.7.4 Interaction between CMB Photons and Matter
314(2)
6.7.5 Constraints on Cosmological Parameters
316(3)
7 Formation and Structure of Dark Matter Halos
319(47)
7.1 Density Peaks
321(5)
7.1.1 Peak Number Density
321(2)
7.1.2 Spatial Modulation of the Peak Number Density
323(1)
7.1.3 Correlation Function
324(1)
7.1.4 Shapes of Density Peaks
325(1)
7.2 Halo Mass Function
326(10)
7.2.1 Press-Schechter Formalism
327(1)
7.2.2 Excursion Set Derivation of the Press-Schechter Formula
328(3)
7.2.3 Spherical versus Ellipsoidal Dynamics
331(2)
7.2.4 Tests of the Press-Schechter Formalism
333(1)
7.2.5 Number Density of Galaxy Clusters
334(2)
7.3 Progenitor Distributions and Merger Trees
336(9)
7.3.1 Progenitors of Dark Matter Halos
336(1)
7.3.2 Halo Merger Trees
336(3)
7.3.3 Main Progenitor Histories
339(1)
7.3.4 Halo Assembly and Formation Times
340(2)
7.3.5 Halo Merger Rates
342(1)
7.3.6 Halo Survival Times
343(2)
7.4 Spatial Clustering and Bias
345(6)
7.4.1 Linear Bias and Correlation Function
345(3)
7.4.2 Assembly Bias
348(1)
7.4.3 Nonlinear and Stochastic Bias
348(3)
7.5 Internal Structure of Dark Matter Halos
351(11)
7.5.1 Halo Density Profiles
351(3)
7.5.2 Halo Shapes
354(1)
7.5.3 Halo Substructure
355(3)
7.5.4 Angular Momentum
358(4)
7.6 The Halo Model of Dark Matter Clustering
362(4)
8 Formation and Evolution of Gaseous Halos
366(51)
8.1 Basic Fluid Dynamics and Radiative Processes
366(5)
8.1.1 Basic Equations
366(1)
8.1.2 Compton Cooling
367(1)
8.1.3 Radiative Cooling
367(2)
8.1.4 Photoionization Heating
369(2)
8.2 Hydrostatic Equilibrium
371(5)
8.2.1 Gas Density Profile
371(2)
8.2.2 Convective Instability
373(1)
8.2.3 Virial Theorem Applied to a Gaseous Halo
374(2)
8.3 The Formation of Hot Gaseous Halos
376(9)
8.3.1 Accretion Shocks
376(3)
8.3.2 Self-Similar Collapse of Collisional Gas
379(4)
8.3.3 The Impact of a Collisionless Component
383(1)
8.3.4 More General Models of Spherical Collapse
384(1)
8.4 Radiative Cooling in Gaseous Halos
385(8)
8.4.1 Radiative Cooling Time Scales for Uniform Clouds
385(2)
8.4.2 Evolution of the Cooling Radius
387(1)
8.4.3 Self-Similar Cooling Waves
388(2)
8.4.4 Spherical Collapse with Cooling
390(3)
8.5 Thermal and Hydrodynamical Instabilities of Cooling Gas
393(5)
8.5.1 Thermal Instability
393(3)
8.5.2 Hydrodynamical Instabilities
396(1)
8.5.3 Heat Conduction
397(1)
8.6 Evolution of Gaseous Halos with Energy Sources
398(10)
8.6.1 Blast Waves
399(5)
8.6.2 Winds and Wind-Driven Bubbles
404(2)
8.6.3 Supernova Feedback and Galaxy Formation
406(2)
8.7 Results from Numerical Simulations
408(2)
8.7.1 Three-Dimensional Collapse without Radiative Cooling
408(1)
8.7.2 Three-Dimensional Collapse with Radiative Cooling
409(1)
8.8 Observational Tests
410(7)
8.8.1 X-ray Clusters and Groups
410(4)
8.8.2 Gaseous Halos around Elliptical Galaxies
414(2)
8.8.3 Gaseous Halos around Spiral Galaxies
416(1)
9 Star Formation in Galaxies
417(32)
9.1 Giant Molecular Clouds: The Sites of Star Formation
418(3)
9.1.1 Observed Properties
418(1)
9.1.2 Dynamical State
419(2)
9.2 The Formation of Giant Molecular Clouds
421(4)
9.2.1 The Formation of Molecular Hydrogen
421(1)
9.2.2 Cloud Formation
422(3)
9.3 What Controls the Star-Formation Efficiency
425(4)
9.3.1 Magnetic Fields
425(1)
9.3.2 Supersonic Turbulence
426(2)
9.3.3 Self-Regulation
428(1)
9.4 The Formation of Individual Stars
429(4)
9.4.1 The Formation of Low-Mass Stars
429(3)
9.4.2 The Formation of Massive Stars
432(1)
9.5 Empirical Star-Formation Laws
433(7)
9.5.1 The Kennicutt-Schmidt Law
434(2)
9.5.2 Local Star-Formation Laws
436(2)
9.5.3 Star-Formation Thresholds
438(2)
9.6 The Initial Mass Function
440(6)
9.6.1 Observational Constraints
441(2)
9.6.2 Theoretical Models
443(3)
9.7 The Formation of Population III Stars
446(3)
10 Stellar Populations and Chemical Evolution
449(46)
10.1 The Basic Concepts of Stellar Evolution
449(14)
10.1.1 Basic Equations of Stellar Structure
450(3)
10.1.2 Stellar Evolution
453(1)
10.1.3 Equation of State, Opacity, and Energy Production
453(7)
10.1.4 Scaling Relations
460(2)
10.1.5 Main-Sequence Lifetimes
462(1)
10.2 Stellar Evolutionary Tracks
463(7)
10.2.1 Pre-Main-Sequence Evolution
463(1)
10.2.2 Post-Main-Sequence Evolution
464(4)
10.2.3 Supernova Progenitors and Rates
468(2)
10.3 Stellar Population Synthesis
470(16)
10.3.1 Stellar Spectra
470(1)
10.3.2 Spectral Synthesis
471(1)
10.3.3 Passive Evolution
472(2)
10.3.4 Spectral Features
474(1)
10.3.5 Age---Metallicity Degeneracy
475(1)
10.3.6 K and E Corrections
475(1)
10.3.7 Emission and Absorption by the Interstellar Medium
476(6)
10.3.8 Star-Formation Diagnostics
482(2)
10.3.9 Estimating Stellar Masses and Star-Formation Histories of Galaxies
484(2)
10.4 Chemical Evolution of Galaxies
486(6)
10.4.1 Stellar Chemical Production
486(2)
10.4.2 The Closed-Box Model
488(2)
10.4.3 Models with Inflow and Outflow
490(1)
10.4.4 Abundance Ratios
491(1)
10.5 Stellar Energetic Feedback
492(3)
10.5.1 Mass-Loaded Kinetic Energy from Stars
492(1)
10.5.2 Gas Dynamics Including Stellar Feedback
493(2)
11 Disk Galaxies
495(49)
11.1 Mass Components and Angular Momentum
495(10)
11.1.1 Disk Models
496(2)
11.1.2 Rotation Curves
498(3)
11.1.3 Adiabatic Contraction
501(1)
11.1.4 Disk Angular Momentum
502(1)
11.1.5 Orbits in Disk Galaxies
503(2)
11.2 The Formation of Disk Galaxies
505(7)
11.2.1 General Discussion
505(1)
11.2.2 Non-Self-Gravitating Disks in Isothermal Spheres
505(2)
11.2.3 Self-Gravitating Disks in Halos with Realistic Profiles
507(2)
11.2.4 Including a Bulge Component
509(1)
11.2.5 Disk Assembly
509(2)
11.2.6 Numerical Simulations of Disk Formation
511(1)
11.3 The Origin of Disk Galaxy Scaling Relations
512(3)
11.4 The Origin of Exponential Disks
515(6)
11.4.1 Disks from Relic Angular Momentum Distribution
515(2)
11.4.2 Viscous Disks
517(1)
11.4.3 The Vertical Structure of Disk Galaxies
518(3)
11.5 Disk Instabilities
521(10)
11.5.1 Basic Equations
521(2)
11.5.2 Local Instability
523(2)
11.5.3 Global Instability
525(3)
11.5.4 Secular Evolution
528(3)
11.6 The Formation of Spiral Arms
531(3)
11.7 Stellar Population Properties
534(4)
11.7.1 Global Trends
535(2)
11.7.2 Color Gradients
537(1)
11.8 Chemical Evolution of Disk Galaxies
538(6)
11.8.1 The Solar Neighborhood
538(2)
11.8.2 Global Relations
540(4)
12 Galaxy Interactions and Transformations
544(30)
12.1 High-Speed Encounters
545(3)
12.2 Tidal Stripping
548(5)
12.2.1 Tidal Radius
548(1)
12.2.2 Tidal Streams and Tails
549(4)
12.3 Dynamical Friction
553(8)
12.3.1 Orbital Decay
556(3)
12.3.2 The Validity of Chandrasekhar's Formula
559(2)
12.4 Galaxy Merging
561(7)
12.4.1 Criterion for Mergers
561(2)
12.4.2 Merger Demographics
563(1)
12.4.3 The Connection between Mergers, Starbursts and AGN
564(1)
12.4.4 Minor Mergers and Disk Heating
565(3)
12.5 Transformation of Galaxies in Clusters
568(6)
12.5.1 Galaxy Harassment
569(1)
12.5.2 Galactic Cannibalism
570(1)
12.5.3 Ram-Pressure Stripping
571(1)
12.5.4 Strangulation
572(2)
13 Elliptical Galaxies
574(44)
13.1 Structure and Dynamics
574(13)
13.1.1 Observables
575(1)
13.1.2 Photometric Properties
576(1)
13.1.3 Kinematic Properties
577(2)
13.1.4 Dynamical Modeling
579(2)
13.1.5 Evidence for Dark Halos
581(1)
13.1.6 Evidence for Supermassive Black Holes
582(2)
13.1.7 Shapes
584(3)
13.2 The Formation of Elliptical Galaxies
587(7)
13.2.1 The Monolithic Collapse Scenario
588(2)
13.2.2 The Merger Scenario
590(3)
13.2.3 Hierarchical Merging and the Elliptical Population
593(1)
13.3 Observational Tests and Constraints
594(8)
13.3.1 Evolution of the Number Density of Ellipticals
594(1)
13.3.2 The Sizes of Elliptical Galaxies
595(3)
13.3.3 Phase-Space Density Constraints
598(1)
13.3.4 The Specific Frequency of Globular Clusters
599(1)
13.3.5 Merging Signatures
600(1)
13.3.6 Merger Rates
601(1)
13.4 The Fundamental Plane of Elliptical Galaxies
602(4)
13.4.1 The Fundamental Plane in the Merger Scenario
604(1)
13.4.2 Projections and Rotations of the Fundamental Plane
604(2)
13.5 Stellar Population Properties
606(7)
13.5.1 Archaeological Records
606(3)
13.5.2 Evolutionary Probes
609(1)
13.5.3 Color and Metallicity Gradients
610(1)
13.5.4 Implications for the Formation of Elliptical Galaxies
610(3)
13.6 Bulges, Dwarf Ellipticals and Dwarf Spheroidals
613(5)
13.6.1 The Formation of Galactic Bulges
614(2)
13.6.2 The Formation of Dwarf Ellipticals
616(2)
14 Active Galaxies
618(34)
14.1 The Population of Active Galactic Nuclei
619(4)
14.2 The Supermassive Black Hole Paradigm
623(17)
14.2.1 The Central Engine
623(1)
14.2.2 Accretion Disks
624(2)
14.2.3 Continuum Emission
626(5)
14.2.4 Emission Lines
631(2)
14.2.5 Jets, Superluminal Motion and Beaming
633(4)
14.2.6 Emission-Line Regions and Obscuring Torus
637(1)
14.2.7 The Idea of Unification
638(1)
14.2.8 Observational Tests for Supermassive Black Holes
639(1)
14.3 The Formation and Evolution of AGN
640(8)
14.3.1 The Growth of Supermassive Black Holes and the Fueling of AGN
640(4)
14.3.2 AGN Demographics
644(3)
14.3.3 Outstanding Questions
647(1)
14.4 AGN and Galaxy Formation
648(4)
14.4.1 Radiative Feedback
649(1)
14.4.2 Mechanical Feedback
650(2)
15 Statistical Properties of the Galaxy Population
652(37)
15.1 Preamble
652(2)
15.2 Galaxy Luminosities and Stellar Masses
654(9)
15.2.1 Galaxy Luminosity Functions
654(4)
15.2.2 Galaxy Counts
658(2)
15.2.3 Extragalactic Background Light
660(3)
15.3 Linking Halo Mass to Galaxy Luminosity
663(7)
15.3.1 Simple Considerations
663(2)
15.3.2 The Luminosity Function of Central Galaxies
665(1)
15.3.3 The Luminosity Function of Satellite Galaxies
666(2)
15.3.4 Satellite Fractions
668(1)
15.3.5 Discussion
669(1)
15.4 Linking Halo Mass to Star-Formation History
670(4)
15.4.1 The Color Distribution of Galaxies
670(3)
15.4.2 Origin of the Cosmic Star-Formation History
673(1)
15.5 Environmental Dependence
674(5)
15.5.1 Effects within Dark Matter Halos
675(2)
15.5.2 Effects on Large Scales
677(2)
15.6 Spatial Clustering and Galaxy Bias
679(5)
15.6.1 Application to High-Redshift Galaxies
683(1)
15.7 Putting it All Together
684(5)
15.7.1 Semi-Analytical Models
684(2)
15.7.2 Hydrodynamical Simulations
686(3)
16 The Intergalactic Medium
689(52)
16.1 The Ionization State of the Intergalactic Medium
690(5)
16.1.1 Physical Conditions after Recombination
690(1)
16.1.2 The Mean Optical Depth of the IGM
690(2)
16.1.3 The Gunn-Peterson Test
692(2)
16.1.4 Constraints from the Cosmic Microwave Background
694(1)
16.2 Ionizing Sources
695(7)
16.2.1 Photoionization versus Collisional Ionization
695(2)
16.2.2 Emissivity from Quasars and Young Galaxies
697(2)
16.2.3 Attenuation by Intervening Absorbers
699(2)
16.2.4 Observational Constraints on the UV Background
701(1)
16.3 The Evolution of the Intergalactic Medium
702(7)
16.3.1 Thermal Evolution
702(2)
16.3.2 Ionization Evolution
704(1)
16.3.3 The Epoch of Re-ionization
705(2)
16.3.4 Probing Re-ionization with 21-cm Emission and Absorption
707(2)
16.4 General Properties of Absorption Lines
709(5)
16.4.1 Distribution Function
709(1)
16.4.2 Thermal Broadening
710(1)
16.4.3 Natural Broadening and Voigt Profiles
711(1)
16.4.4 Equivalent Width and Column Density
712(2)
16.4.5 Common QSO Absorption Line Systems
714(1)
16.4.6 Photoionization Models
714(1)
16.5 The Lyman α Forest
714(9)
16.5.1 Redshift Evolution
715(1)
16.5.2 Column Density Distribution
716(1)
16.5.3 Doppler Parameter
717(1)
16.5.4 Sizes of Absorbers
718(1)
16.5.5 Metallicity
719(1)
16.5.6 Clustering
720(1)
16.5.7 Lyman α Forests at Low Redshift
721(1)
16.5.8 The Helium Lyman a Forest
722(1)
16.6 Models of the Lyman α Forest
723(9)
16.6.1 Early Models
723(1)
16.6.2 Lyman α Forest in Hierarchical Models
724(7)
16.6.3 Lyman α Forest in Hydrodynamical Simulations
731(1)
16.7 Lyman-Limit Systems
732(1)
16.8 Damped Lyman α Systems
733(5)
16.8.1 Column Density Distribution
734(1)
16.8.2 Redshift Evolution
734(2)
16.8.3 Metallicities
736(2)
16.8.4 Kinematics
738(1)
16.9 Metal Absorption Line Systems
738(3)
16.9.1 MgII Systems
739(1)
16.9.2 CIV and OVI Systems
740(1)
A Basics of General Relativity
741(7)
A1.1 Space-time Geometry
741(2)
A1.2 The Equivalence Principle
743(1)
A1.3 Geodesic Equations
744(2)
A1.4 Energy-Momentum Tensor
746(1)
A1.5 Newtonian Limit
747(1)
A1.6 Einstein's Field Equation
747(1)
B Gas and Radiative Processes
748(16)
B1.1 Ideal Gas
748(1)
B1.2 Basic Equations
749(2)
B1.3 Radiative Processes
751(9)
B1.3.1 Einstein Coefficients and Milne Relation
752(3)
B1.3.2 Photoionization and Photo-excitation
755(1)
B1.3.3 Recombination
756(1)
B1.3.4 Collisional Ionization and Collisional Excitation
757(1)
B1.3.5 Bremsstrahlung
758(1)
B1.3.6 Compton Scattering
759(1)
B1.4 Radiative Cooling
760(4)
C Numerical Simulations
764(11)
C1.1 N-Body Simulations
764(6)
C1.1.1 Force Calculations
766(1)
C1.1.2 Issues Related to Numerical Accuracy
767(2)
C1.1.3 Boundary Conditions
769(1)
C1.1.4 Initial Conditions
769(1)
C1.2 Hydrodynamical Simulations
770(5)
C1.2.1 Smoothed-Particle Hydrodynamics (SPH)
770(2)
C1.2.2 Grid-Based Algorithms
772(3)
D Frequently Used Abbreviations
775(1)
E Useful Numbers
776
References 111(695)
Index 806
Houjun Mo is Professor of Astrophysics at the University of Massachusetts. He is known for his work on the formation and clustering of galaxies and their dark matter halos. Frank van den Bosch is Associate Professor at the University of Utah, and is known for his studies of the formation, dynamics, and clustering of galaxies. Simon White is Director at the Max Planck Institute for Astrophysics in Garching. He is one of the originators of the modern theory of galaxy formation and has received numerous international prizes and honors.