Acknowledgements |
|
xiii | |
Preface to the Fifth Edition |
|
xv | |
Historical Introduction |
|
xix | |
|
|
1 | (18) |
|
|
2 | (1) |
|
1.2 Subfields and Subrings of the Complex Numbers |
|
|
3 | (4) |
|
|
7 | (1) |
|
|
8 | (11) |
|
2 The Fundamental Theorem of Algebra |
|
|
19 | (12) |
|
|
19 | (3) |
|
2.2 Fundamental Theorem of Algebra |
|
|
22 | (4) |
|
|
26 | (5) |
|
3 Factorisation of Polynomials |
|
|
31 | (18) |
|
3.1 The Euclidean Algorithm |
|
|
31 | (5) |
|
|
36 | (2) |
|
|
38 | (2) |
|
3.4 Eisenstein's Criterion |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (6) |
|
|
49 | (10) |
|
|
49 | (4) |
|
|
53 | (1) |
|
|
54 | (5) |
|
|
59 | (10) |
|
5.1 Algebraic and Transcendental Extensions |
|
|
59 | (1) |
|
5.2 The Minimal Polynomial |
|
|
60 | (2) |
|
5.3 Simple Algebraic Extensions |
|
|
62 | (2) |
|
5.4 Classifying Simple Extensions |
|
|
64 | (5) |
|
6 The Degree of an Extension |
|
|
69 | (10) |
|
6.1 Definition of the Degree |
|
|
69 | (1) |
|
|
70 | (4) |
|
6.3 Primitive Element Theorem |
|
|
74 | (5) |
|
7 Ruler-and-Compass Constructions |
|
|
79 | (22) |
|
7.1 Approximate Constructions and More General Instruments |
|
|
81 | (2) |
|
|
83 | (5) |
|
7.3 Specific Constructions |
|
|
88 | (4) |
|
|
92 | (2) |
|
7.5 Construction from a Given Set of Points |
|
|
94 | (7) |
|
8 The Idea behind Galois Theory |
|
|
101 | (22) |
|
8.1 A First Look at Galois Theory |
|
|
102 | (1) |
|
8.2 Galois Groups According to Galois |
|
|
102 | (3) |
|
8.3 How to Use the Galois Group |
|
|
105 | (1) |
|
|
106 | (1) |
|
8.5 Polynomials and Extensions |
|
|
107 | (2) |
|
8.6 The Galois Correspondence |
|
|
109 | (2) |
|
|
111 | (5) |
|
8.8 Natural Irrationalities |
|
|
116 | (7) |
|
9 Normality and Separability |
|
|
123 | (8) |
|
|
123 | (3) |
|
|
126 | (1) |
|
|
127 | (4) |
|
|
131 | (8) |
|
10.1 Linear Independence of Monomorphisms |
|
|
131 | (8) |
|
|
139 | (6) |
|
|
139 | (1) |
|
|
140 | (5) |
|
12 The Galois Correspondence |
|
|
145 | (4) |
|
12.1 The Fundamental Theorem of Galois Theory |
|
|
145 | (4) |
|
|
149 | (12) |
|
13.1 Examples of Galois Groups |
|
|
149 | (9) |
|
|
158 | (3) |
|
14 Solubility and Simplicity |
|
|
161 | (10) |
|
|
161 | (3) |
|
|
164 | (3) |
|
|
167 | (4) |
|
|
171 | (10) |
|
|
171 | (5) |
|
15.2 An Insoluble Quintic |
|
|
176 | (2) |
|
|
178 | (3) |
|
16 Abstract Rings and Fields |
|
|
181 | (14) |
|
|
182 | (2) |
|
16.2 General Properties of Rings and Fields |
|
|
184 | (2) |
|
16.3 Polynomials Over General Rings |
|
|
186 | (1) |
|
16.4 The Characteristic of a Field |
|
|
187 | (2) |
|
|
189 | (6) |
|
17 Abstract Field Extensions and Galois Groups |
|
|
195 | (20) |
|
|
195 | (1) |
|
17.2 Simple Algebraic Extensions |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
200 | (4) |
|
17.6 Galois Theory for Abstract Fields |
|
|
204 | (1) |
|
17.7 Conjugates and Minimal Polynomials |
|
|
205 | (3) |
|
17.8 The Primitive Element Theorem |
|
|
208 | (1) |
|
17.9 Algebraic Closure of a Field |
|
|
209 | (6) |
|
18 The General Polynomial Equation |
|
|
215 | (18) |
|
18.1 Transcendence Degree |
|
|
215 | (3) |
|
18.2 Elementary Symmetric Polynomials |
|
|
218 | (2) |
|
18.3 The General Polynomial |
|
|
220 | (1) |
|
|
221 | (4) |
|
18.5 Solving Equations of Degree Four or Less |
|
|
225 | (2) |
|
|
227 | (6) |
|
|
233 | (8) |
|
19.1 Structure of Finite Fields |
|
|
233 | (1) |
|
19.2 The Multiplicative Group |
|
|
234 | (2) |
|
19.3 Counterexample to the Primitive Element Theorem |
|
|
236 | (1) |
|
19.4 Application to Solitaire |
|
|
237 | (4) |
|
|
241 | (16) |
|
|
241 | (3) |
|
20.2 Which Constructions are Possible? |
|
|
244 | (1) |
|
|
245 | (4) |
|
|
249 | (1) |
|
20.5 How to Construct a Regular 17-gon |
|
|
249 | (8) |
|
|
257 | (26) |
|
|
258 | (2) |
|
21.2 Fifth Roots Revisited |
|
|
260 | (3) |
|
21.3 Vandermonde Revisited |
|
|
263 | (2) |
|
|
265 | (3) |
|
21.5 Cyclotomic Polynomials |
|
|
268 | (3) |
|
21.6 Galois Group of Q(ζ)/Q |
|
|
271 | (3) |
|
21.7 Constructions Using a Trisector |
|
|
274 | (9) |
|
22 Calculating Galois Groups |
|
|
283 | (10) |
|
22.1 Transitive Subgroups |
|
|
283 | (2) |
|
22.2 Bare Hands on the Cubic |
|
|
285 | (2) |
|
|
287 | (1) |
|
22.4 General Algorithm for the Galois Group |
|
|
288 | (5) |
|
23 Algebraically Closed Fields |
|
|
293 | (8) |
|
23.1 Ordered Fields and Their Extensions |
|
|
293 | (2) |
|
|
295 | (2) |
|
|
297 | (4) |
|
24 Transcendental Numbers |
|
|
301 | (10) |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
305 | (6) |
|
25 What Did Galois Do or Know? |
|
|
311 | (16) |
|
25.1 List of the Relevant Material |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
313 | (2) |
|
25.4 What is Galois up to? |
|
|
315 | (2) |
|
25.5 Alternating Groups, Especially A5 |
|
|
317 | (1) |
|
25.6 Simple Groups Known to Galois |
|
|
318 | (1) |
|
25.7 Speculations about Proofs |
|
|
319 | (5) |
|
|
324 | (3) |
|
|
327 | (10) |
|
26.1 Inverse Galois Problem |
|
|
327 | (2) |
|
26.2 Differential Galois Theory |
|
|
329 | (4) |
|
|
333 | (4) |
References |
|
337 | (8) |
Index |
|
345 | |