This book offers the fundamentals of Galois Theory, including a set of copious, well-chosen exercises that form an important part of the presentation. The pace is gentle and incorporates interesting historical material, including aspects on the life of Galois. Computed examples, recent developments, and extensions of results into other related areas round out the presentation.
Recenzijos
J.-P. Escofier
Galois Theory
"Escofiers treatment, at a level suitable for advanced, senior undergraduates or first-year graduate students, centers on finite extensions of number fields, incorporating numerous examples and leaving aside finite fields and the entire concept of separability for the final chapters . . . copious, well-chosen exercises . . . are presented with their solutions . . . The prose is . . . spare and enthusiastic, and the proofs are both instructive and efficient . . . Escofier has written an excellent text, offering a relatively elementary introduction to a beautiful subject in a book sufficiently broad to present a contemporary viewpoint and intuition but sufficiently restrained so as not to overwhelm the reader."AMERICAN MATHEMATICAL SOCIETY
Daugiau informacijos
Springer Book Archives
1 Historical Aspects of the Resolution of Algebraic Equations.- 1.1
Approximating the Roots of an Equation.- 1.2 Construction of Solutions by
Intersections of Curves.- 1.3 Relations with Trigonometry.- 1.4 Problems of
Notation and Terminology.- 1.5 The Problem of Localization of the Roots.- 1.6
The Problem of the Existence of Roots.- 1.7 The Problem of Algebraic
Solutions of Equations.- Toward
Chapter 2.- 2 Resolution of Quadratic, Cubic,
and Quartic Equations.- 2.1 Second-Degree Equations.- 2.1.1 The Babylonians.-
2.1.2 The Greeks.- 2.1.3 The Arabs.- 2.1.4 Use of Negative Numbers.- 2.2
Cubic Equations.- 2.2.1 The Greeks.- 2.2.2 Omar Khayyam and Sharaf ad Din at
Tusi.- 2.2.3 Scipio del Ferro, Tartaglia, Cardan.- 2.2.4 Algebraic Solution
of the Cubic Equation.- 2.2.5 First Computations with Complex Numbers.- 2.2.6
Raffaele Bombelli.- 2.2.7 Franēois Vičte.- 2.3 Quartic Equations.- Exercises
for
Chapter 2.- Solutions to Some of the Exercises.- 3 Symmetric
Polynomials.- 3.1 Symmetric Polynomials.- 3.1.1 Background.- 3.1.2
Definitions.- 3.2 Elementary Symmetric Polynomials.- 3.2.1 Definition.- 3.2.2
The Product of the X ? Xi; Relations Between Coefficients and Roots.- 3.3
Symmetric Polynomials and Elementary Symmetric Polynomials.- 3.3.1 Theorem.-
3.3.2 Proposition.- 3.3.3 Proposition.- 3.4 Newtons Formulas.- 3.5 Resultant
of Two Polynomials.- 3.5.1 Definition.- 3.5.2 Proposition.- 3.6 Discriminant
of a Polynomial.- 3.6.1 Definition.- 3.6.2 Proposition.- 3.6.3 Formulas.-
3.6.4 Polynomials with Real Coefficients: Real Roots and Sign of the
Discriminant.- Exercises for
Chapter 3.- Solutions to Some of the Exercises.-
4 Field Extensions.- 4.1 Field Extensions.- 4.1.1 Definition.- 4.1.2
Proposition.- 4.1.3 The Degree of an Extension.- 4.1.4 Towers of Fields.- 4.2
The Tower Rule.- 4.2.1 Proposition.- 4.3 Generated Extensions.- 4.3.1
Proposition.- 4.3.2 Definition.- 4.3.3 Proposition.- 4.4 Algebraic Elements.-
4.4.1 Definition.- 4.4.2 Transcendental Numbers.- 4.4.3 Minimal Polynomial of
an Algebraic Element.- 4.4.4 Definition.- 4.4.5 Properties of the Minimal
Polynomial.- 4.4.6 Proving the Irreducibility of a Polynomial in Z[ X].- 4.5
Algebraic Extensions.- 4.5.1 Extensions Generated by an Algebraic Element.-
4.5.2 Properties of K[ a].- 4.5.3 Definition.- 4.5.4 Extensions of Finite
Degree.- 4.5.5 Corollary: Towers of Algebraic Extensions.- 4.6 Algebraic
Extensions Generated by n Elements.- 4.6.1 Notation.- 4.6.2 Proposition.-
4.6.3 Corollary.- 4.7 Construction of an Extension by Adjoining a Root.-
4.7.1 Definition.- 4.7.2 Proposition.- 4.7.3 Corollary.- 4.7.4 Universal
Property of K[ X]/(P).- Toward
Chapters 5 and 6.- Exercises for
Chapter 4.-
Solutions to Some of the Exercises.- 5 Constructions with Straightedge and
Compass.- 5.1 Constructible Points.- 5.2 Examples of Classical
Constructions.- 5.2.1 Projection of a Point onto a Line.- 5.2.2 Construction
of an Orthonormal Basis from Two Points.- 5.2.3 Construction of a Line
Parallel to a Given Line Passing Through a Point.- 5.3 Lemma.- 5.4
Coordinates of Points Constructible in One Step.- 5.5 A Necessary Condition
for Constructibility.- 5.6 Two Problems More Than Two Thousand Years Old.-
5.6.1 Duplication of the Cube.- 5.6.2 Trisection of the Angle.- 5.7 A
Sufficient Condition for Constructibility.- Exercises for
Chapter 5.-
Solutions to Some of the Exercises.- 6 K-Homomorphisms.- 6.1 Conjugate
Numbers.- 6.2 K-Homomorphisms.- 6.2.1 Definitions.- 6.2.2 Properties.- 6.3
Algebraic Elements and K-Homomorphisms.- 6.3.1 Proposition.- 6.3.2 Example.-
6.4 Extensions of Embeddings into ?.- 6.4.1 Definition.- 6.4.2 Proposition.-
6.4.3 Proposition.- 6.5 The Primitive Element Theorem.- 6.5.1 Theorem and
Definition.- 6.5.2 Example.- 6.6 Linear Independence of K-Homomorphisms.-
6.6.1 Characters.- 6.6.2 Emil Artins Theorem.- 6.6.3 Corollary: Dedekinds
Theorem.- Exercises for
Chapter 6.- Solutions to Some of the Exercises.- 7
Normal Extensions.- 7.1 Splitting Fields.- 7.1.1 Definition.- 7.1.2 Splitting
Field of a Cubic Polynomial.- 7.2 Normal Extensions.- 7.3 Normal Extensions
and K-Homomorphisms.- 7.4 Splitting Fields and Normal Extensions.- 7.4.1
Proposition.- 7.4.2 Converse.- 7.5 Normal Extensions and Intermediate
Extensions.- 7.6 Normal Closure.- 7.6.1 Definition.- 7.6.2 Proposition.-
7.6.3 Proposition.- 7.7 Splitting Fields: General Case.- Toward
Chapter 8.-
Exercises for
Chapter 7.- Solutions to Some of the Exercises.- 8 Galois
Groups.- 8.1 Galois Groups.- 8.1.1 The Galois Group of an Extension.- 8.1.2
The Order of the Galois Group of a Normal Extension of Finite Degree.- 8.1.3
The Galois Group of a Polynomial.- 8.1.4 The Galois Group as a Subgroup of a
Permutation Group.- 8.1.5 A Short History of Groups.- 8.2 Fields of
Invariants.- 8.2.1 Definition and Proposition.- 8.2.2 Emil Artins Theorem.-
8.3 The Example of
% MathType!MTEF!2!1!+-
% feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC
% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz
% ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb
% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe
% pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam
% aaeaqbaaGcbaacbaGae8xuae1aamWaaeaadaGcbaqaaiabikdaYaWc
% baGaeG4mamdaaOGaeiilaWIaemOAaOgacaGLBbGaayzxaaaaaa!4235!
$$
Q\left[ {\sqrt[ 3]{2},j} \right]
$$ : First Part.- 8.4 Galois Groups and Intermediate Extensions.- 8.5 The
Galois Correspondence.- 8.6 The Example of
% MathType!MTEF!2!1!+-
% feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC
% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz
% ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb
% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe
% pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam
% aaeaqbaaGcbaacbaGae8xuae1aamWaaeaadaGcbaqaaiabikdaYaWc
% baGaeG4mamdaaOGaeiilaWIaemOAaOgacaGLBbGaayzxaaaaaa!4235!
$$
Q\left[ {\sqrt[ 3]{2},j} \right]
$$: Second Part.- 8.7 The Example X4 + 2.- 8.7.1 Dihedral Groups.- 8.7.2 The
Special Case of D4.- 8.7.3 The Galois Group of X4 + 2.- 8.7.4 The Galois
Correspondence.- 8.7.5 Search for Minimal Polynomials.- Toward
Chapters 9,
10, and 12.- Exercises for
Chapter 8.- Solutions to Some of the Exercises.- 9
Roots of Unity.- 9.1 The Group U(n) of Units of the Ring ?/n?.- 9.1.1
Definition and Background.- 9.1.2 The Structure of U(n).- 9.2 The Möbius
Function.- 9.2.1 Multiplicative Functions.- 9.2.2 The Möbius Function.- 9.2.3
Proposition.- 9.2.4 The Möbius Inversion Formula.- 9.3 Roots of Unity.- 9.3.1
n-th Roots of Unity.- 9.3.2 Proposition.- 9.3.3 Primitive Roots.- 9.3.4
Properties of Primitive Roots.- 9.4 Cyclotomic Polynomials.- 9.4.1
Definition.- 9.4.2 Properties of the Cyclotomic Polynomial.- 9.5 The Galois
Group over Q of an Extension of Q by a Root of Unity.- Exercises for
Chapter
9.- Solutions to Some of the Exercises.- 10 Cyclic Extensions.- 10.1 Cyclic
and Abelian Extensions.- 10.2 Extensions by a Root and Cyclic Extensions.-
10.3 Irreducibility of Xp ? a.- 10.4 Hilberts Theorem 90.- 10.4.1 The Norm.-
10.4.2 Hilberts Theorem 90.- 10.5 Extensions by a Root and Cyclic
Extensions: Converse.- 10.6 Lagrange Resolvents.- 10.6.1 Definition.- 10.6.2
Properties.- 10.7 Resolution of the Cubic Equation.- 10.8 Solution of the
Quartic Equation.- 10.9 Historical Commentary.- Exercises for
Chapter 10.-
Solutions to Some of the Exercises.- 11 Solvable Groups.- 11.1 First
Definition.- 11.2 Derived or Commutator Subgroup.- 11.3 Second Definition of
Solvability.- 11.4 Examples of Solvable Groups.- 11.5 Third Definition.- 11.6
The Group An Is Simple for n ? 5.- 11.6.1 Theorem.- 11.6.2 An Is Not Solvable
for n ? 5, Direct Proof.- 11.7 Recent Results.- Exercises for
Chapter 11.-
Solutions to Some of the Exercises.- 12 Solvability of Equations by
Radicals.- 12.1 Radical Extensions and Polynomials Solvable by Radicals.-
12.1.1 Radical Extensions.- 12.1.2 Polynomials Solvable by Radicals.- 12.1.3
First Construction.- 12.1.4 Second Construction.- 12.2 If a Polynomial Is
Solvable by Radicals, Its Galois Group Is Solvable.- 12.3 Example of a
Polynomial Not Solvable by Radicals.- 12.4 The Converse of the Fundamental
Criterion.- 12.5 The General Equation of Degree n.- 12.5.1 Algebraically
Independent Elements.- 12.5.2 Existence of Algebraically Independent
Elements.- 12.5.3 The General Equation of Degree n.- 12.5.4 Galois Group of
the General Equation of Degree n.- Exercises for
Chapter 12.- Solutions to
Some of the Exercises.- 13 The Life of Évariste Galois.- 14 Finite Fields.-
14.1 Algebraically Closed Fields.- 14.1.1 Definition.- 14.1.2 Algebraic
Closures.- 14.1.3 Theorem (Steinitz, 1910).- 14.2 Examples of Finite Fields.-
14.3 The Characteristic of a Field.- 14.3.1 Definition.- 14.3.2 Properties.-
14.4 Properties of Finite Fields.- 14.4.1 Proposition.- 14.4.2 The Frobenius
Homomorphism.- 14.5 Existence and Uniqueness of a Finite Field with pr
Elements.- 14.5.1 Proposition.- 14.5.2 Corollary.- 14.6 Extensions of Finite
Fields.- 14.7 Normality of a Finite Extension of Finite Fields.- 14.8 The
Galois Group of a Finite Extension of a Finite Field.- 14.8.1 Proposition.-
14.8.2 The Galois Correspondence.- 14.8.3 Example.- Exercises for
Chapter
14.- Solutions to Some of the Exercises.- 15 Separable Extensions.- 15.1
Separability.- 15.2 Example of an Inseparable Element.- 15.3 A Criterion for
Separability.- 15.4 Perfect Fields.- 15.5 Perfect Fields and Separable
Extensions.- 15.6 Galois Extensions.- 15.6.1 Definition.- 15.6.2
Proposition.- 15.6.3 The Galois Correspondence.- Toward
Chapter 16.- 16
Recent Developments.- 16.1 The Inverse Problem of Galois Theory.- 16.1.1 The
Problem.- 16.1.2 The Abelian Case.- 16.1.3 Example.- 16.2 Computation of
Galois Groups over ? for Small-Degree Polynomials.- 16.2.1 Simplification of
the Problem.- 16.2.2 The Irreducibility Problem.- 16.2.3 Embedding of G into
Sn.- 16.2.4 Looking for G Among the Transitive Subgroups of Sn.- 16.2.5
Transitive Subgroups of S4.- 16.2.6 Study of ?(G) ? An.- 16.2.7 Study of ?(G)
? D4.- 16.2.8 Study of ?(G) ? ?/4?.- 16.2.9 An Algorithm for n = 4.