Atnaujinkite slapukų nuostatas

Gas Turbine Combined Cycle Power Plants [Kietas viršelis]

(Rensselaer Polytechnic Institute, United States)
  • Formatas: Hardback, 544 pages, aukštis x plotis: 254x178 mm, weight: 1315 g, 152 Tables, black and white; 163 Line drawings, black and white; 3 Halftones, black and white; 166 Illustrations, black and white
  • Išleidimo metai: 10-Dec-2019
  • Leidėjas: CRC Press
  • ISBN-10: 0367199572
  • ISBN-13: 9780367199579
  • Formatas: Hardback, 544 pages, aukštis x plotis: 254x178 mm, weight: 1315 g, 152 Tables, black and white; 163 Line drawings, black and white; 3 Halftones, black and white; 166 Illustrations, black and white
  • Išleidimo metai: 10-Dec-2019
  • Leidėjas: CRC Press
  • ISBN-10: 0367199572
  • ISBN-13: 9780367199579

This book covers the design, analysis, and optimization of the cleanest, most efficient fossil fuel-fired electric power generation technology at present and in the foreseeable future.

The book contains a wealth of first principles-based calculation methods comprising key formulae, charts, rules of thumb, and other tools developed by the author over the course of 25+ years spent in the power generation industry. It is focused exclusively on actual power plant systems and actual field and/or rating data providing a comprehensive picture of the gas turbine combined cycle technology from performance and cost perspectives.

Material presented in this book is applicable for research and development studies in academia and government/industry laboratories, as well as practical, day-to-day problems encountered in the industry (including OEMs, consulting engineers and plant operators).

Preface xi
Author xiii
Chapter 1 Introduction
1(6)
1.1 Note on Units
2(5)
1.1.1 Odds and Ends
4(3)
Chapter 2 Prerequisites
7(8)
2.1 Books and Periodicals
7(1)
2.2 Software Tools
8(3)
2.3 Codes and Standards
11(4)
References
14(1)
Chapter 3 Bare Necessities
15(18)
3.1 Why Combined Cycle?
15(3)
3.2 Combined Cycle Classification
18(1)
3.3 Simple Calculations
19(8)
3.3.1 Design Performance
20(2)
3.3.2 Off-Design Performance
22(2)
3.3.3 Lower or Higher Heating Value?
24(1)
3.3.4 Gross or Net?
25(2)
3.4 Operability
27(6)
References
31(2)
Chapter 4 Gas Turbine
33(42)
4.1 Brief Overview
33(5)
4.2 Rating Performance
38(1)
4.3 Technology Landscape
39(3)
4.4 Basic Calculations
42(29)
4.4.1 Heat and Mass Balance Analysis (First Law)
42(6)
4.4.2 Simplified Cycle Analysis
48(6)
4.4.3 Stage-by-Stage Gas Turbine Model
54(1)
4.4.3.1 Turbine Aero
55(9)
4.4.3.2 Turbine Cooling
64(1)
4.4.3.3 Compressor Aero
65(6)
4.5 Fuel Flexibility
71(4)
References
73(2)
Chapter 5 Steam Turbine
75(40)
5.1 Impulse versus Reaction
78(17)
5.1.1 Steam Turbine Irreversibility
91(2)
5.1.2 Supercritical Steam Turbine
93(2)
5.2 Last-Stage Bucket
95(5)
5.3 Basic Calculations
100(15)
5.3.1 Steam-Path Efficiency
103(1)
5.3.2 Steam Cycle Simple Calculation
104(4)
5.3.3 Steam Cycle Efficiency History
108(2)
5.3.4 Exhaust End Analysis
110(2)
References
112(3)
Chapter 6 Heat Recovery Steam Generator (HRSG)
115(50)
6.1 Fundamentals of Heat Recovery
120(16)
6.1.1 Heat Release Diagram
120(1)
6.1.2 HRSG Irreversibility
121(1)
6.1.3 HRSG Effectiveness
122(1)
6.1.4 Simplest Possible HRSG: One-Pressure, No Reheat
123(6)
6.1.5 Next Level: Two-Pressure HRSG
129(4)
6.1.6 The "Ultimate" HRSG: Three-Pressure with Reheat
133(3)
6.1.7 Advanced Steam Conditions
136(1)
6.2 HRSG Performance Calculations
136(14)
6.2.1 HRSG Pressure Loss
137(1)
6.2.1.1 Stack Effect
138(2)
6.2.2 Heat Transfer in the HRSG
140(4)
6.2.3 HRSG Steam Production
144(2)
6.2.4 Stack Temperature
146(4)
6.3 Supplementary (Duct) Firing
150(9)
6.3.1 Practical Considerations
154(1)
6.3.2 Aeroderivative Gas Turbine Combined Cycle
155(4)
6.4 Supercritical Bottoming Cycle
159(6)
6.4.1 Feasibility of Supercritical Bottoming Steam Cycle
163(1)
References
164(1)
Chapter 7 Heat Sink Options
165(24)
7.1 Water-Cooled Surface Condenser
167(5)
7.2 Wet Cooling Tower
172(4)
7.3 Circulating Water Pumps and Piping
176(1)
7.4 Air-Cooled (Dry) Condenser
177(4)
7.5 Heat Sink System Selection
181(2)
7.6 Heat Sink Optimization
183(6)
7.6.1 Two-Step Condensation
185(3)
References
188(1)
Chapter 8 Combining the Pieces
189(42)
8.1 Topping Cycle
189(2)
8.2 Bottoming Cycle
191(6)
8.2.1 Theory
191(3)
8.2.2 Practice
194(3)
8.3 Combined Cycle
197(6)
8.3.1 Second Law Analysis
197(4)
8.3.2 Optimum Combined Cycle Efficiency
201(2)
8.4 History
203(12)
8.5 State of the Art
215(6)
8.6 The Hall of Fame
221(10)
8.6.1 Irsching
221(1)
8.6.2 Bouchain
222(1)
8.6.3 Inland Empire Energy Center
223(1)
8.6.3.1 Steam-Cooled H Technology
223(1)
8.6.3.2 IEEC 107H
224(1)
8.6.3.3 Fuel Gas Moisturization
225(1)
8.6.4 60% Net (LHV) Bogey
226(2)
8.6.5 Epilogue
228(1)
References
228(3)
Chapter 9 Major Equipment
231(24)
9.1 Gas Turbine Package
231(3)
9.2 Steam Turbine Package
234(7)
9.2.1 Steam Valves
236(2)
9.2.2 Steam Seal Regulator (SSR)
238(2)
9.2.3 Gland Seal Condenser (GSC)
240(1)
9.2.4 Turning Gear
240(1)
9.2.5 Protective Features
240(1)
9.3 Heat Recovery Steam Generator (HRSG)
241(6)
9.4 AC Generator
247(4)
9.5 Scope of Supply
251(4)
References
253(2)
Chapter 10 Balance of Plant
255(38)
10.1 Electrical Equipment
255(5)
10.1.1 Plant Controls
258(2)
10.1.2 Plant Instrumentation
260(1)
10.2 Pipes and Valves
260(8)
10.2.1 Steam System
263(2)
10.2.2 Valves
265(3)
10.3 Pumps
268(5)
10.3.1 Pumps Shown in Plant Heat and Mass Balance
268(1)
10.3.2 Pumps Not Shown in Plant Heat and Mass Balance
269(1)
10.3.3 Pump Selection and Design
269(4)
10.4 Tanks
273(1)
10.5 Auxiliary Boiler
274(1)
10.6 Fuel Gas Booster Compressor
275(1)
10.7 Fuel Gas Heating and Conditioning System
276(2)
10.8 Closed Cooling Water (CCW) System
278(1)
10.9 Water Facilities
279(14)
10.9.1 Why Treatment?
279(4)
10.9.2 Once-Through (Benson) HRSG
283(1)
10.9.3 Usage Minimization
284(1)
10.9.4 Wastewater Treatment
285(1)
10.9.5 Zero Liquid Discharge
286(2)
10.9.6 Water Balance
288(1)
10.9.7 Deaeration
288(4)
References
292(1)
Chapter 11 Construction and Commissioning
293(20)
11.1 Procurement
297(1)
11.2 Construction
298(3)
11.3 Startup and Commissioning
301(4)
11.3.1 HRSG Steam Blow
302(3)
11.4 Acceptance Tests
305(4)
11.5 General Arrangement
309(4)
Chapter 12 Environmental Considerations
313(14)
12.1 Air Permits
315(6)
12.2 Continuous Emissions Monitoring System (CEMS)
321(1)
12.3 Noise Abatement
322(2)
12.4 Selective Catalytic Reduction
324(3)
12.4.1 NOx Emission Calculations
325(1)
References
326(1)
Chapter 13 Economics
327(34)
13.1 Price versus Cost
327(3)
13.2 Cost Estimation
330(12)
13.2.1 Simplified
331(7)
13.2.2 Detailed
338(4)
13.3 Cost of Electricity
342(4)
13.4 Value of 1 Btu/kWh of Heat Rate
346(2)
13.5 Bottoming Cycle "Optimization"
348(13)
13.5.1 LCOE Dissected
349(4)
13.5.2 Two-Pressure or Three-Pressure?
353(6)
References
359(2)
Chapter 14 Cogeneration
361(10)
Chapter 15 Operability
371(48)
15.1 Steady-State Operation
374(17)
15.1.1 Hot Day Power Augmentation
384(3)
15.1.2 Drum-Type versus Once-Through (Benson) Control
387(4)
15.2 Transient Operation
391(2)
15.3 GTCC Startup: Basics
393(8)
15.3.1 Steam Turbine Roll
396(2)
15.3.2 Steam Turbine Stress Control
398(1)
15.3.3 HRSG Stress Control
399(2)
15.4 GTCC Startup: Practical Considerations
401(7)
15.4.1 Steam Bypass Systems
403(2)
15.4.2 HP Turbine Exhaust Temperature Control
405(1)
15.4.3 Fast versus "Slow"
405(3)
15.5 GTCC Shutdown
408(2)
15.6 Emergencies
410(2)
15.7 Grid Code Compliance
412(7)
References
417(2)
Chapter 16 Maintenance
419(20)
16.1 Maintenance Costs
421(3)
16.2 Important Metrics
424(7)
16.2.1 Availability Calculation Example
428(3)
16.3 Failure Mechanisms
431(8)
References
437(2)
Chapter 17 Repowering
439(14)
17.1 Which Repowering?
441(1)
17.2 Cost of Repowering
442(2)
17.3 An Example Calculation
444(6)
17.4 Takeaways
450(3)
References
451(2)
Chapter 18 Integrated Gasification Combined Cycle
453(22)
18.1 Syngas-Fired Gas Turbine
457(3)
18.2 Bottoming Cycle
460(2)
18.3 Gasification
462(8)
18.3.1 Gasifier Types
462(1)
18.3.2 Cold Gas Efficiency
462(2)
18.3.3 Gasifier Heat Recovery
464(1)
18.3.4 Air Separation Unit
464(2)
18.3.5 Syngas Cleanup
466(1)
18.3.6 Syngas Expander
467(1)
18.3.7 Syngas Heating and Moisturization
467(1)
18.3.8 Carbon Capture and Sequestration
468(2)
18.4 Example
470(5)
References
474(1)
Chapter 19 Carbon Capture
475(12)
19.1 Post-Combustion Carbon Capture Basics
476(7)
19.1.1 State of the Art
476(2)
19.1.2 A Novel Method
478(2)
19.1.3 A Novel Operating Strategy
480(3)
19.2 Simple Calculations
483(4)
References
485(2)
Chapter 20 What Next?
487(4)
Appendix A Property Calculations 491(6)
Appendix B Standard Conditions for Temperature and Pressure 497(2)
Appendix C Exergetic Efficiency 499(4)
Appendix D Thermal Response Basics 503(4)
Appendix E Steam Turbine Stress Basics 507(12)
Appendix F Carbon Capture 519(2)
Index 521
Dr. S. Can Gülen (PhD 1992, Rensselaer Polytechnic Institute, Troy, NY), PE, ASME Fellow, has 25 years of mechanical engineering experience covering a wide spectrum of technology, system, and software design, development (GTPRO/MASTER, Thermoflex), assessment, and analysis, primarily in the field of steam and gas turbine combined cycle (109FB-SS, IGCC 207FB, H-System) process and power plant turbomachinery and thermodynamics (in Thermoflow, Inc., General Electric and Bechtel). Dr. Gülen has authored/co-authored numerous internal/external archival papers and articles (40+), design practices, technical assessment reports, and US patents (20+) on gas turbine performance, cost, optimization, data reconciliation, analysis and modelling.