Atnaujinkite slapukų nuostatas

El. knyga: Gelfand Triples and Their Hecke Algebras: Harmonic Analysis for Multiplicity-Free Induced Representations of Finite Groups

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2267
  • Išleidimo metai: 25-Sep-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030516079
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2267
  • Išleidimo metai: 25-Sep-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030516079

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a general situation, and only partial results were obtained in the one-dimensional case. Here, for the first time, new interesting and important results are proved. In particular, after developing a general theory (including the study of the associated Hecke algebras and the harmonic analysis of the corresponding spherical functions), two completely new highly nontrivial and significant examples (in the setting of linear groups over finite fields) are examined in full detail. The readership ranges from graduate students to experienced researchers in Representation Theory and Harmonic Analysis.

Recenzijos

The volume is an interesting and important contribution to the theory of multiplicity-free representations of finite groups and their spherical functions. (Antoni Wawrzyczyk, Mathematical Reviews, June, 2023)

- Preliminaries. - Hecke Algebras. - Multiplicity-Free Triples. - The
Case of a Normal Subgroup. - Harmonic Analysis of the Multiplicity-Free
Triple (GL(2, Fq),C, ). - Harmonic Analysis of the Multiplicity-Free
Triple (GL(2, Fq2),GL(2, Fq), ). - Appendix A.
Tullio Ceccherini-Silberstein obtained his BS in Mathematics (1990) from the University of Rome La Sapienza and his PhD in Mathematics (1994) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Sannio (Benevento). He is an Editor of the EMS journal Groups, Geometry, and Dynamics. He has authored more than 90 research articles in Functional and Harmonic Analysis, Group Theory, Ergodic Theory and Dynamical Systems, and Theoretical Computer Science and has co-authored 5 monographs on Harmonic Analysis and Representation Theory.  Fabio Scarabotti obtained his BS in Mathematics (1989) and his PhD in Mathematics (1994) from the University of Rome La Sapienza.  Currently, he is professor of Mathematical Analysis at the University of Rome La Sapienza. He has authored more than 40 research articles in Harmonic Analysis, Group Theory, Combinatorics, Ergodic Theory and Dynamical Systems, and TheoreticalComputer Science and has co-authored 4 monographs on Harmonic Analysis and Representation Theory. Filippo Tolli obtained his BS in Mathematics (1991) from the University of Rome La Sapienza and his PhD in Mathematics (1996) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Roma Tre. He has authored more than 30 research articles in Harmonic Analysis, Group Theory, Combinatorics, Lie Groups and Partial Differential Equations and has co-authored 4 monographs on Harmonic Analysis and Representation Theory.