Atnaujinkite slapukų nuostatas

El. knyga: Generalizations of Thomae's Formula for Zn Curves

  • Formatas: PDF+DRM
  • Serija: Developments in Mathematics 21
  • Išleidimo metai: 10-Nov-2010
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781441978479
  • Formatas: PDF+DRM
  • Serija: Developments in Mathematics 21
  • Išleidimo metai: 10-Nov-2010
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781441978479

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Previous publications on the generalization of the Thomae formulae to Zn curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formula for Zn Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory.

This book provides a comprehensive overview of the theory of theta functions, and the necessary background for understanding and proving the Thomae formulae and their relationship to the Zn curves. The book is intended for graduate students in mathematics studying complex analysis, algebraic geometry, and number theory as well as mathematical physicists and physicists studying conformal field theory.

Recenzijos

From the reviews:

This book provides a detailed exposition of Thomaes formula for cyclic covers of CP1, in the non-singular case and in the singular case for Zn curves of a particular shape. This book is written for graduate students as well as young researchers . In any case, the reader should be acquainted with complex analysis (in several variables), Riemann surfaces, and some elementary algebraic geometry. It is a very readable book. The theory is always illustrated with examples in a very generous mathematical style. (Juan M. Cervińo Mathematical Reviews, Issue 2012 f)

In the book under review, the authors present the background necessary to understand and then prove Thomaes formula for Zn curves. The point of view of the book is to work out Thomae formulae for Zn curves from first principles, i.e. just using Riemanns theory of theta functions. the elementary approach which is chosen in the book makes it a nice development of Riemanns ideas and accessible to graduate students and young researchers. (Christophe Ritzenthaler, Zentralblatt MATH, Vol. 1222, 2011)

- Introduction.-
1. Riemann Surfaces.-
2. Zn Curves.-
3. Examples of Thomae Formulae.-
4. Thomae Formulae for Nonsingular Zn Curves.-
5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index.