Atnaujinkite slapukų nuostatas

Generalized Transmission Line Method to Study the Far-zone Radiation of Antennas Under a Multilayer Structure [Minkštas viršelis]

  • Formatas: Paperback / softback, 96 pages, aukštis x plotis: 235x187 mm
  • Serija: Synthesis Lectures on Antennas
  • Išleidimo metai: 30-Oct-2008
  • Leidėjas: Morgan & Claypool Publishers
  • ISBN-10: 1598298135
  • ISBN-13: 9781598298130
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 96 pages, aukštis x plotis: 235x187 mm
  • Serija: Synthesis Lectures on Antennas
  • Išleidimo metai: 30-Oct-2008
  • Leidėjas: Morgan & Claypool Publishers
  • ISBN-10: 1598298135
  • ISBN-13: 9781598298130
Kitos knygos pagal šią temą:
This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a full wave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to a Hertzian dipole within a multilayer structure by solving an equivalent transmission line circuit. Since an antenna can be modeled as a set of Hertzian dipoles, the method could be used to predict the far-zone radiation of an antenna under a multilayer structure. The analytical expression for the far-zone field is derived for a structure with or without a polarizer. The procedure of obtaining the Hertzian dipole model that is required by the generalized transmission line method is also described. Several examples are given to demonstrate the capabilities, accuracy, and efficiency of this method.
Synthesis Lectures on Antennas iii
Contents vii
Introduction
1(2)
Antennas Under a Multilayer Dielectric Slab
3(28)
Introduction
3(1)
Radiation due to an electric dipole
3(9)
Evaluation of the horizontal component using chainmatrix
5(2)
Evaluation of the vertical component
7(1)
Field projection
8(1)
Evaluation of the horizontal component using S chain matrix
9(3)
Radiation due to a magnetic dipole
12(3)
Evaluation of the horizontal component using chainmatrix
13(1)
Evaluation of the vertical component
13(1)
Field projection
14(1)
Evaluation of the horizontal component using S chain matrix
14(1)
Results verification
15(6)
Applications
21(6)
Thin wire monopole antenna in a two-layer structure
23(1)
DRA in a four-layer structure
24(3)
Conclusions
27(4)
Antennas Under a Polarized Multilayer Structure
31(20)
Introduction
31(1)
Radiation due to an electric dipole
31(4)
Radiation due to a magnetic dipole
35(1)
Asymptotic boundary conditions
36(4)
PEC-type asymptotic boundary conditions
36(3)
PMC-type asymptotic boundary conditions
39(1)
Applications
40(5)
Cross polarization reduction
40(2)
Polarizer
42(3)
Discussion
45(1)
Conclusions
46(5)
Hertzian Dipole Model for an Antenna
51(22)
Introduction
51(1)
Narrowband Hertzian dipole model
52(2)
Particle swarm optimization method
52(1)
PSO model for getting a narrowband dipole model
53(1)
Limitations of the narrowband model
54(5)
Wideband Hertzian dipole model
59(13)
PSO model for getting a wideband dipole model
59(2)
Modeling of a wideband antenna
61(2)
Application
63(5)
Rejection of Gaussian noise
68(3)
Frequency scalability
71(1)
Conclusions
72(1)
Derivation of Equations in
Chapter 2
73(4)
Derivation of Equation (2.24)
73(1)
Derivation of Equation (2.29)
74(1)
Derivation of Equation (2.30)
75(2)
Maxima Source Code
77(6)
Maxima source code for a PEC-SI
77(3)
Maxima source code for a PMC-SI
80(3)
Bibliography 83(2)
Biography 85