Atnaujinkite slapukų nuostatas

El. knyga: Generative Adversarial Networks and Deep Learning: Theory and Applications

Edited by (PCCoE, SPPU, Pune), Edited by (Pimpri Chinchwad College of Engineering, Pune, India), Edited by (MIT Art Design and Technology University, Pune, India), Edited by (VIIT, Pune)
  • Formatas: 222 pages
  • Išleidimo metai: 10-Apr-2023
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781000840568
  • Formatas: 222 pages
  • Išleidimo metai: 10-Apr-2023
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781000840568

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. It concentrates on cutting-edge research in DL and GAN which includes creating new tools and methods for processing text, images, and audio.



This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio.

A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc.

Features:

  • Presents a comprehensive guide on how to use GAN for images and videos.
  • Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN
  • Highlights the inclusion of gaming effects using deep learning methods
  • Examines the significant technological advancements in GAN and its real-world application.
  • Discusses as GAN challenges and optimal solutions

The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning.

The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum

1. Generative Adversarial Networks and Its Use cases.
2. Image-to-Image
Translation using Generative Adversarial Networks.
3. Image Editing Using
Generative Adversarial Network.
4. Generative Adversarial Networks for Video
to Video Translation.
5. Security Issues in Generative Adversarial Networks.
6. Generative Adversarial Networks aided Intrusion Detection System.
7.
Textual Description to Facial Image Generation.
8. An application of
Generative Adversarial Network in Natural Language Generation.
9. Beyond
image synthesis: GAN and Audio: It covers how GAN will be used for audio
synthesis along with its applications.
10. A Study on the Application Domains
of Electroencephalogram for the Deep Learning-Based Transformative
Healthcare.
11. Emotion Detection using Generative Adversarial Network.
12.
Underwater Image Enhancement Using Generative Adversarial Network.
13.
Towards GAN Challenges and Its Optimal Solutions.