Atnaujinkite slapukų nuostatas

El. knyga: Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Reeves (mathematical and information sciences, Coventry U., UK) and Rowe (computer science, U. of Birmingham, UK) describe the traditional theory of schemata and the implications of the no-free-lunch theorem before turning to the different perspectives on genetic algorithms, including Markov chain theory, and the dynamic and macroscopic behavior of genetic algorithms. Two chapters are devoted to statistical methods in experimental design and in heuristic search methods. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory is a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops. However, this theoretical work is still rather fragmented, and the authors believe that it is the right time to provide the field with a systematic presentation of the current state of theory in the form of a set of theoretical perspectives. The authors do this in the interest of providing students and researchers with a balanced foundational survey of some recent research on GAs. The scope of the book includes chapter-length discussions of Basic Principles, Schema Theory, "No Free Lunch", GAs and Markov Processes, Dynamical Systems Model, Statistical Mechanics Approximations, Predicting GA Performance, Landscapes and Test Problems.
Introduction
1(18)
Historical Background
1(3)
Optimization
4(5)
Why GAs? Why Theory?
9(8)
Bibliographic Notes
17(2)
Basic Principles
19(46)
GA Concepts
19(1)
Representation
19(6)
The Elements of a Genetic Algorithm
25(24)
Illustrative Example
49(2)
Practical Considerations
51(4)
Special Cases
55(4)
Summary
59(1)
Bibliographic Notes
60(5)
Schema Theory
65(30)
Schemata
65(3)
The Schema Theorem
68(6)
Critiques of Schema-Based Theory
74(4)
Surveying the Wreckage
78(6)
Exact Models
84(2)
Walsh Transforms and deception
86(4)
Conclusion
90(1)
Bibliographic Notes
91(4)
No Free Lunch for GAs
95(16)
Introduction
95(1)
The Theorem
96(7)
Developments
103(3)
Revisiting Algorithms
106(2)
Conclusions
108(1)
Bibliographic Notes
109(2)
GAs as Markov Processes
111(30)
Introduction
111(7)
Limiting Distribution of the Simple GA
118(4)
Elitism and Convergence
122(5)
Annealing the Mutation Rate
127(3)
Calculating with Markov Chains
130(8)
Bibliographic Notes
138(3)
The Dynamical Systems Model
141(32)
Population Dynamics
141(4)
Selection
145(6)
Mutation
151(7)
Crossover
158(5)
Representational Symmetry
163(6)
Bibliographic Notes
169(4)
Statistical Mechanics Approximations
173(28)
Approximating GA Dynamics
173(3)
Generating Functions
176(3)
Selection
179(4)
Mutation
183(7)
Finite Population Effects
190(2)
Crossover
192(5)
Bibliographic Notes
197(4)
Predicting GA Performance
201(30)
Introduction
201(1)
Epistasis Variance
202(1)
Davidor's Methodology
203(1)
An Experimental Design Approach
204(3)
Walsh representation
207(8)
Other related measures
215(6)
Reference classes
221(2)
General Discussion
223(5)
Bibliographic Notes
228(3)
Landscapes
231(34)
Introduction
231(6)
Mathematical Characterization
237(9)
Onemax Landscapes
246(7)
Long Path Landscapes
253(3)
Local Optima and Schemata
256(3)
Path Tracing GAs
259(2)
Bibliographic Notes
261(4)
Summary
265(22)
The Demise of the Schema Theorem
265(3)
Exact Models and Approximations
268(5)
Landscapes, Operators and Free Lunches
273(1)
The Impact of Theory on Practice
274(4)
Future research directions
278(7)
The Design of Efficient Algorithms
285(2)
A Test Problems
287(8)
Unitation
287(1)
Onemax
288(1)
Trap functions
288(1)
Royal Road
288(2)
Hierarchical-IFF (HIFF)
290(1)
Deceptive functions
290(1)
Long paths
291(1)
N K landscape functions
292(1)
l, θ functions
292(3)
Bibliography 295(32)
Index 327