Atnaujinkite slapukų nuostatas

El. knyga: Genetic Modification in the Food Industry: A Strategy for Food Quality Improvement

  • Formatas: PDF+DRM
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461558156
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461558156
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Although the true economic impact of genetic modifications is yet to be realized, the potential of this new technology to benefit the food processing industry and to improve food quality is enormous. Specific genetically modified whole foods and food ingredients that have recently become available or are about to become available are described and discussed in relation to their technical performance and consumer acceptance. The regulatory, ethical and communication issues in food biotechnology are also reviewed. As the products of gene technology come on stream, decisions need to be made as to whether or not to use them. Yet, many food industry professionals have little or no background in biotechnology and have a limited concept of possible applications in foods. Therefore, this book aims to foster a greater understanding of the benefits and potential pitfalls of this new technology.

Daugiau informacijos

Springer Book Archives
Contributors xi
Preface xv
Part 1 The Broader Issues
1(98)
1 Modern food biotechnology: overview of key issues
3(24)
Sibel Roller
Susan Harlander
1.1 Introduction
3(2)
1.2 The basic techniques of genetic modification
5(2)
1.3 Genetic modification of agronomic traits in crops
7(1)
1.4 Environmental concerns
8(2)
1.5 The genetic modification of quality in foods
10(1)
1.6 The genetically modified tomato
11(3)
1.6.1 The need for a tomato with improved flavour
11(2)
1.6.2 The inhibition of pectin degradation in the GM tomato
1.6.3 Performance, safety and approval of the GM tomato
13(1)
1.6.4 The marketing of the GM tomato
14(1)
1.6.5 Prospects for quality improvement in fruit and vegetables
14(1)
1.7 Starter cultures for fermented foods
14(1)
1.8 Diagnostics for food testing
15(1)
1.9 The genetic modification of animals
16(2)
1.9.1 Herman the transgenic bull
17(1)
1.9.2 Dolly the cloned sheep
17(1)
1.9.3 Recombinant BST
17(1)
1.10 Safety and regulations
18(3)
1.10.1 Labelling
20(1)
1.10.2 Patenting of life forms
20(1)
1.11 Consumer acceptance of gene technology in food production
21(1)
1.12 The case for communication
22(1)
1.13 The future of genetic modification in the food industry
23(4)
References
24(3)
2 Consumer perceptions of modern food biotechnology
27(20)
Lynn J. Frewer
Richard Shepherd
2.1 Introduction
27(1)
2.2 Knowledge and public understanding
28(1)
2.3 The importance of social context
29(3)
2.4 The international picture
32(2)
2.5 Risk perception and consumer reaction
34(1)
2.6 Credibility of the risk regulators
35(1)
2.7 The role of the media in consumer acceptance
35(3)
2.8 The development of effective communication about biotechnology
38(5)
2.8.1 What should be communicated?
39(1)
2.8.2 Source credibility
40(1)
2.8.3 Prior attitudes and source characteristics
41(1)
2.8.4 Individual differences
42(1)
2.8.5 The consensus conference model
42(1)
2.9 Future research
43(1)
2.10 Conclusions
44(3)
References
44(3)
3 Moral concerns and the educational function of ethics
47(14)
Roger Straughan
3.1 Introduction - why bother about ethics?
47(1)
3.2 What are `moral and ethical concerns'?
48(2)
3.2.1 `Moral' concerns
48(1)
3.2.2 `Ethical' concerns
49(1)
3.3 Why should there be moral concerns about food biotechnology?
50(1)
3.4 Is modern biotechnology wrong in itself?
51(4)
3.5 Do the possible consequences of modern biotechnology warrant moral concern?
55(3)
3.6 Who will benefit?
58(1)
3.7 Conclusions
59(2)
Acknowledgement
60(1)
References
60(1)
4 Worldwide regulatory issues: legislation and labelling
61(28)
Nick Tomlinson
4.1 Introduction
61(1)
4.2 Existing legislation
62(20)
4.2.1 United Kingdom
62(3)
4.2.2 The European Union
65(4)
4.2.3 USA
69(5)
4.2.4 Canada
74(4)
4.2.5 Japan
78(2)
4.2.6 Australia and New Zealand
80(2)
4.2.7 China
82(1)
4.3 Moves towards international harmonisation
82(5)
4.3.1 Environmental legislation
82(1)
4.3.2 Food safety
83(2)
4.3.3 Labelling
85(2)
4.4 Conclusions
87(2)
References
87(2)
5 Communicating biotechnology to an uncertain public: the need to raise awareness
89(10)
Joanna Scott
5.1 Introduction
89(1)
5.2 Attitudes to biotechnology
90(2)
5.3 The FDF communication programme on biotechnology
92(2)
5.4 Other industry initiatives in the UK
94(1)
5.5 The issue of labelling
94(1)
5.6 International communication initiatives
95(1)
5.7 Conclusions
96(3)
References
97(2)
Part 2 Case Studies
99(152)
6 Food enzymes
101(28)
Sibel Roller
Peter W. Goodenough
6.1 Introduction and historical perspective
101(1)
6.2 Chymosin
102(9)
6.2.1 The need for a milk-clotting enzyme
102(1)
6.2.2 Milk clotting
103(1)
6.2.3 The structure and synthesis of animal chymosin
104(1)
6.2.4 The genetic modification of microorganisms for chymosin production
104(3)
6.2.5 The industrial production of recombinant chymosins
107(1)
6.2.6 Technological performance of recombinant chymosins
107(1)
6.2.7 Health, safety and environmental issues
108(2)
6.2.8 Legislative and labelling position
110(1)
6.2.9 Consumer acceptance and market penetration
110(1)
6.3 Other food enzymes from GMOs
111(3)
6.3.1 Recombinant enzymes for high fructose corn syrup production
111(2)
6.3.2 Safety, legislation and labelling
113(1)
6.4 Protein engineering of enzymes
114(10)
6.4.1 The structure and function of proteins
115(2)
6.4.2 Site-directed mutagenesis
117(1)
6.4.3 Improving the properties of enzymes by protein engineering
118(6)
6.5 Future prospects
124(5)
References
125(4)
7 Brewing with genetically modified amylolytic yeast
129(29)
John Hammond
7.1 Introduction
129(1)
7.2 The genetic modification procedure
130(6)
7.2.1 The genetics of amylolysis
130(1)
7.2.2 Yeast transformation methods
131(1)
7.2.3 Construction of an amylolytic strain of brewing yeast using the STA2 gene
132(2)
7.2.4 An alternative approach to the construction of an amylolytic strain of brewing yeast using the GA gene
134(2)
7.3 The technological performance of genetically modified brewing yeasts
136(8)
7.3.1 The yeast strain NCYC1324 [ pDVK2]
136(4)
7.3.2 The yeast strain NCYC1342.GA3
140(4)
7.3.4 Advantages and disadvantages of genetically modified amylolytic yeasts
144(1)
7.4 Health, safety and environmental issues
144(4)
7.4.1 Containment considerations
144(1)
7.4.2 Transfer of `novel' genetic material to other microorganisms and survivability of the modified strains
145(1)
7.4.3 Pathogenicity and allergenicity
146(1)
7.4.4 Disposal of waste yeast - environmental considerations
147(1)
7.5 Legislative and labelling position
148(2)
7.6 Consumer acceptance and marketing
150(1)
7.7 Future prospects
151(4)
7.7.1 Improved utilization of carbohydrates: yeasts secreting β-glucanases
151(1)
7.7.2 Yeasts with a reduced capacity to produce diacetyl
152(1)
7.7.3 Yeasts with a reduced capacity to produce hydrogen sulphide
153(1)
7.7.4 Increased production of flavour compounds
154(1)
7.8 Conclusions
155(3)
Acknowledgements
155(1)
References
155(3)
8 Baker's yeast
158(16)
Rutger Van Rooijen
Paul Klaassen
8.1 Introduction and historical perspective
158(1)
8.2 Traditional aproaches to yeast improvement
159(1)
8.3 The construction of genetically modified baker's yeast
160(3)
8.3.1 Transformation of yeast
161(1)
8.3.2 The transforming DNA
161(1)
8.3.3 Selection of transformants
162(1)
8.3.4 Self-cloning in yeast
163(1)
8.4 Technological properties of genetically modified baker's yeast strains
163(5)
8.4.1 Increased expression of MAL genes
163(2)
8.4.2 Yeast with an enhanced trehalose content
165(2)
8.4.3 Introduction of futile cycles in the glycolytic pathway
167(1)
8.5 Future prospects
168(6)
8.5.1 The impact of genome sequencing projects
170(1)
8.5.2 Metabolic pathway engineering
171(1)
References
172(2)
9 Starter cultures for the dairy industry
174(19)
Colin Hill
R. Paul Ross
9.1 Introduction
174(2)
9.2 Improvement of dairy starters
176(1)
9.3 Genetic tools available in lactococci
177(3)
9.3.1 Assembling the tools
178(1)
9.3.2 The development of more sophisticated techniques
179(1)
9.4 Genetic transfer in lactic acid bacteria
180(1)
9.4.1 Gene exchange mechanisms
181(1)
9.5 Cloning and characterization of key lactococcal traits
181(2)
9.5.1 Casein degradation
182(1)
9.5.2 Bacteriophage resistance
182(1)
9.6 `Natural' genetic modification of lactococcal starters
183(3)
9.7 Metabolic engineering of lactococci
186(2)
9.8 Social, cultural and legal aspects and implications
188(2)
9.9 Conclusions
190(3)
References
191(2)
10 Designer oils: the high oleic acid soybean
193(21)
Anthony J. Kinney
Susan Knowlton
10.1 Introduction and historical perspective
193(2)
10.2 Target applications in the genetic modification of oil
195(2)
10.3 Development and composition of high oleic acid soybeans
197(2)
10.4 Field performance of high oleic acid soybeans
199(1)
10.5 Technological properties of high oleic acid soybeans
200(5)
10.6 Health, safety and legislative issues
205(3)
10.7 Environmental issues
208(1)
10.8 Labelling of the high oleic acid soybean
209(1)
10.9 Consumer acceptance and marketing
210(1)
10.10 Future prospects: true designer oils
210(4)
References
211(3)
11 Potatoes
214(14)
David M. Stark
11.1 Introduction and historical perspective
214(1)
11.2 Production process and patent status
215(2)
11.2.1 NewLeaf™ potato
215(1)
11.2.2 High solids potato
216(1)
11.3 Field/process performance
217(2)
11.3.1 NewLeaf™ potato
217(1)
11.3.2 High solids potato
218(1)
11.4 Technological properties
219(4)
11.4.1 NewLeaf™ potato
219(1)
11.4.2 High solids potato
220(3)
11.5 Health, safety and environmental issues
223(1)
11.5.1 NewLeaf™ potato
223(1)
11.5.2 High solids potato
224(1)
11.6 Legislative and labeling position
224(1)
11.6.1 NewLeaf™ potato
224(1)
11.6.2 High solids potato
225(1)
11.7 Consumer acceptance and marketing
225(1)
11.7.1 NewLeaf™ potato
225(1)
11.7.2 High solids potato
226(1)
11.8 Future prospects
226(2)
References
227(1)
12 Cereals
228(23)
Paul Christou
12.1 Introduction and historical perspective
228(2)
12.2 The techniques of genetic modification in cereals
230(6)
12.2.1 Maize
231(2)
12.2.2 Wheat
233(1)
12.2.3 Rice
234(1)
12.2.4 Barley
235(1)
12.3 The application of gene technology in cereals
236(7)
12.3.1 Maize
237(2)
12.3.2 Wheat
239(1)
12.3.3 Rice
240(3)
12.3.4 Barley
243(1)
12.4 Intellectual property and patenting issues in cereal biotechnology
243(2)
12.5 Health, safety and environmental issues
245(1)
12.6 Legislative and labelling position
245(1)
12.7 Consumer acceptance and marketing
246(1)
12.8 Future prospects
247(4)
References
247(4)
Glossary 251(8)
Index 259