Preface |
|
xiii | |
Acknowledgments |
|
xv | |
Authors |
|
xvii | |
Abbreviations |
|
xix | |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
2 | (1) |
|
Applications of Genome Editing |
|
|
3 | (3) |
|
Concerns with Genome Editing |
|
|
6 | (3) |
|
|
9 | (14) |
|
History of Zinc Finger Nucleases |
|
|
9 | (1) |
|
Target Cells (Prokaryotic Cells and Eukaryotic Cells) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
Monitoring Editing Specificity |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (4) |
|
|
16 | (1) |
|
ZFN-Mediated Genome Editing |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
Gene Disruption in Model Organisms |
|
|
17 | (2) |
|
Gene Disruption in Mammalian Somatic Cells |
|
|
19 | (1) |
|
More Complex Types of Disruption |
|
|
19 | (1) |
|
Homology-Based Genome Editing |
|
|
20 | (1) |
|
Gene Correction (Allele Editing) |
|
|
20 | (1) |
|
Gene Addition in Human ES and iPS Cells |
|
|
20 | (1) |
|
|
20 | (1) |
|
Other Practical Applications of ZFNs |
|
|
21 | (1) |
|
Advances in Therapy Using ZFNs |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (4) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (4) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
Versions of Meganucleases |
|
|
28 | (1) |
|
|
28 | (1) |
|
Principle Behind MegaTALs |
|
|
28 | (1) |
|
|
29 | (1) |
|
Advantages and Disadvantages |
|
|
29 | (2) |
|
|
31 | (14) |
|
|
31 | (1) |
|
|
32 | (3) |
|
Mechanism of the CRISPR System |
|
|
35 | (1) |
|
Genome Editing Using CRISPR |
|
|
36 | (3) |
|
|
39 | (1) |
|
Other Applications of CRISPR in Crops and Livestock |
|
|
40 | (1) |
|
Other Applications of CRISPR in Humans |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
How to Counter Off-Target Effects |
|
|
43 | (2) |
|
6 Comparison of ZFNs, TALENs, CRISPR, and MegaTALs |
|
|
45 | (6) |
|
|
45 | (3) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
Specificity and Simplicity |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
Efficiency of Gene Editing |
|
|
50 | (1) |
|
Biology at the Breakpoint |
|
|
50 | (1) |
|
|
51 | (12) |
|
|
51 | (1) |
|
History of and Principle behind Gene Drives |
|
|
52 | (1) |
|
Classifications of Gene Drives |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
Combination Drive Systems |
|
|
53 | (1) |
|
Natural and Synthetic Gene Drives |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
Threshold Dependent Drive |
|
|
54 | (1) |
|
Threshold-Independent Drive Systems |
|
|
54 | (1) |
|
Temporarily Self-Limiting Drives |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
HEGs (Homing Endonuclease Genes) |
|
|
55 | (1) |
|
Segregation and Transmission Distorters |
|
|
55 | (1) |
|
|
55 | (1) |
|
Toxin--Antidote Based Drives |
|
|
56 | (1) |
|
Maternal-Effect Dominant Embryonic Arrest (MEDEA) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
Application of Gene Drives |
|
|
58 | (1) |
|
Advantages of Gene Drives |
|
|
59 | (1) |
|
Disadvantages of Gene Drives |
|
|
59 | (1) |
|
Concerns with Gene Drives |
|
|
60 | (1) |
|
|
60 | (3) |
|
8 Supernumerary B Chromosomes |
|
|
63 | (4) |
|
|
63 | (1) |
|
|
63 | (1) |
|
Chief Traits of B Chromosomes |
|
|
64 | (1) |
|
Target Cells for B Chromosomes |
|
|
64 | (1) |
|
Disadvantages of B Chromosomes |
|
|
64 | (3) |
|
|
67 | (4) |
|
Mechanism of Suppression Drives |
|
|
67 | (1) |
|
|
68 | (1) |
|
A Synthetic CRISPR-Cas9 Gene Drive |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
Examples of Where They Were Used |
|
|
69 | (2) |
|
10 Maternal-Effect Dominant Embryonic Arrest {Medea) System |
|
|
71 | (2) |
|
11 Heritable Microorganisms: Wolbachia |
|
|
73 | (12) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
Error Rate and CI Efficiency |
|
|
75 | (1) |
|
|
76 | (1) |
|
Cytoplasmic Incompatibility (CI) |
|
|
77 | (1) |
|
Unidirectional and Bidirectional CI |
|
|
77 | (1) |
|
Wolbachia Genes Inducing CI |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
Collection of Mosquito Stock |
|
|
79 | (1) |
|
Sterilizing Wolbachia from Infected Mosquitoes |
|
|
79 | (1) |
|
Infecting Experimental Mosquitoes with Wolbachia |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
Analysis of Limiting Factor |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
Wolbachia Causing Disease |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (2) |
|
Practical Applications of Wolbachia |
|
|
83 | (1) |
|
Wolbachia Used to Prevent Disease |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (10) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
87 | (2) |
|
|
89 | (1) |
|
Mutagenic Chain Reaction (MCR) |
|
|
90 | (1) |
|
Mutagenic Chain Reaction Construct |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
Causes of Failure of CRISPR Gene Drives |
|
|
91 | (1) |
|
Applications of CRISPR Gene Drives |
|
|
92 | (1) |
|
Examples of How CRISPR Gene Drives Can Be Used |
|
|
93 | (1) |
|
|
93 | (2) |
|
13 The Killer-Rescue System |
|
|
95 | (4) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
Reliability of the Technology |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
Reversibility of the K-R Gene Drive System |
|
|
97 | (1) |
|
Comparison of K-R Systems |
|
|
97 | (2) |
Glossary |
|
99 | (8) |
References |
|
107 | (20) |
Index |
|
127 | |