Preface |
|
xiii | |
Preface to first edition |
|
xv | |
A note about software |
|
xix | |
|
|
1 | (6) |
|
Development of chemical modeling |
|
|
2 | (3) |
|
|
5 | (2) |
|
|
7 | (20) |
|
|
7 | (5) |
|
Configurations of reaction models |
|
|
12 | (10) |
|
Uncertainty in geochemical modeling |
|
|
22 | (5) |
|
Part I Equilibrium in natural waters |
|
|
27 | (164) |
|
|
29 | (24) |
|
Thermodynamic description of equilibrium |
|
|
30 | (6) |
|
|
36 | (2) |
|
|
38 | (12) |
|
Number of variables and the phase rule |
|
|
50 | (3) |
|
Solving for the equilibrium state |
|
|
53 | (18) |
|
|
53 | (2) |
|
Solving nonlinear equations |
|
|
55 | (5) |
|
Solving the governing equations |
|
|
60 | (7) |
|
Finding the stable phase assemblage |
|
|
67 | (4) |
|
|
71 | (10) |
|
Determining the transformation matrix |
|
|
72 | (3) |
|
|
75 | (1) |
|
Altering equilibrium constants |
|
|
76 | (1) |
|
Reexpressing bulk composition |
|
|
77 | (4) |
|
Equilibrium models of natural waters |
|
|
81 | (22) |
|
Chemical model of seawater |
|
|
82 | (11) |
|
|
93 | (4) |
|
|
97 | (6) |
|
|
103 | (12) |
|
Redox potentials in natural waters |
|
|
103 | (2) |
|
|
105 | (2) |
|
Morro do Ferro groundwater |
|
|
107 | (3) |
|
Energy available for microbial respiration |
|
|
110 | (5) |
|
|
115 | (22) |
|
|
117 | (6) |
|
|
123 | (4) |
|
Comparison of the methods |
|
|
127 | (6) |
|
Brine deposit at Sebkhat El Melah |
|
|
133 | (4) |
|
Sorption and ion exchange |
|
|
137 | (18) |
|
Distribution coefficient (κd) approach |
|
|
137 | (3) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (3) |
|
|
146 | (4) |
|
|
150 | (5) |
|
|
155 | (14) |
|
|
156 | (4) |
|
|
160 | (1) |
|
|
161 | (3) |
|
|
164 | (5) |
|
Automatic reaction balancing |
|
|
169 | (12) |
|
|
169 | (6) |
|
|
175 | (1) |
|
|
176 | (5) |
|
|
181 | (10) |
|
The question of uniqueness |
|
|
182 | (1) |
|
Examples of nonunique solutions |
|
|
182 | (7) |
|
Coping with nonuniqueness |
|
|
189 | (2) |
|
Part II Reaction processes |
|
|
191 | (126) |
|
|
193 | (8) |
|
|
193 | (3) |
|
Extracting the overall reaction |
|
|
196 | (2) |
|
|
198 | (3) |
|
Polythermal, fixed, and sliding paths |
|
|
201 | (16) |
|
Polythermal reaction paths |
|
|
201 | (2) |
|
Fixed activity and fugacity paths |
|
|
203 | (4) |
|
Sliding activity and fugacity paths |
|
|
207 | (10) |
|
|
217 | (14) |
|
|
218 | (4) |
|
|
222 | (6) |
|
|
228 | (3) |
|
Kinetics of dissolution and precipitation |
|
|
231 | (14) |
|
|
232 | (4) |
|
From laboratory to application |
|
|
236 | (2) |
|
|
238 | (2) |
|
|
240 | (2) |
|
|
242 | (3) |
|
|
245 | (12) |
|
Rate laws for oxidation and reduction |
|
|
246 | (2) |
|
|
248 | (2) |
|
|
250 | (2) |
|
|
252 | (2) |
|
|
254 | (3) |
|
|
257 | (12) |
|
Microbial respiration and fermentation |
|
|
257 | (3) |
|
|
260 | (1) |
|
Thermodynamically consistent rate laws |
|
|
261 | (2) |
|
|
263 | (2) |
|
|
265 | (4) |
|
|
269 | (16) |
|
|
270 | (2) |
|
|
272 | (3) |
|
Fractionation in reacting systems |
|
|
275 | (4) |
|
Dolomitization of a limestone |
|
|
279 | (6) |
|
Transport in flowing groundwater |
|
|
285 | (16) |
|
|
285 | (2) |
|
|
287 | (5) |
|
Advection-dispersion equation |
|
|
292 | (2) |
|
|
294 | (5) |
|
|
299 | (2) |
|
|
301 | (16) |
|
|
301 | (5) |
|
|
306 | (4) |
|
|
310 | (7) |
|
Part III Applied reaction modeling |
|
|
317 | (168) |
|
|
319 | (22) |
|
Origin of a fluorite deposit |
|
|
320 | (5) |
|
|
325 | (6) |
|
Energy available to thermophiles |
|
|
331 | (10) |
|
|
341 | (16) |
|
Principles of geothermometry |
|
|
342 | (5) |
|
Hot spring at Hveravik, Iceland |
|
|
347 | (3) |
|
Geothermal fields in Iceland |
|
|
350 | (7) |
|
|
357 | (16) |
|
Springs and saline lakes of the Sierra Nevada |
|
|
357 | (5) |
|
Chemical evolution of Mono Lake |
|
|
362 | (5) |
|
|
367 | (6) |
|
|
373 | (14) |
|
Dolomite cement in the Gippsland basin |
|
|
374 | (4) |
|
Lyons sandstone, Denver basin |
|
|
378 | (9) |
|
Kinetics of water-rock interaction |
|
|
387 | (18) |
|
Approach to equilibrium and steady state |
|
|
387 | (6) |
|
Quartz deposition in a fracture |
|
|
393 | (2) |
|
Silica transport in an aquifer |
|
|
395 | (2) |
|
|
397 | (3) |
|
|
400 | (5) |
|
|
405 | (10) |
|
Rainwater infiltration in an aquifer |
|
|
405 | (4) |
|
|
409 | (6) |
|
|
415 | (12) |
|
Uranyl reduction by ferrous iron |
|
|
415 | (3) |
|
Autocatalytic oxidation of manganese |
|
|
418 | (4) |
|
Microbial degradation of phenol |
|
|
422 | (5) |
|
|
427 | (8) |
|
Caustic waste injected in dolomite |
|
|
428 | (3) |
|
|
431 | (4) |
|
|
435 | (14) |
|
Sulfate scaling in North Sea oil fields |
|
|
436 | (6) |
|
|
442 | (7) |
|
|
449 | (12) |
|
Role of atmospheric oxygen |
|
|
450 | (3) |
|
|
453 | (3) |
|
|
456 | (5) |
|
Contamination and remediation |
|
|
461 | (10) |
|
Contamination with inorganic lead |
|
|
462 | (6) |
|
Groundwater chromatography |
|
|
468 | (3) |
|
|
471 | (14) |
|
Arsenate reduction by Bacillus arsenicoselenatis |
|
|
471 | (6) |
|
|
477 | (8) |
Appendix 1 Sources of modeling software |
|
485 | (6) |
Appendix 2 Evaluating the HMW activity model |
|
491 | (8) |
Appendix 3 Minerals in the LLNL database |
|
499 | (8) |
Appendix 4 Nonlinear rate laws |
|
507 | (2) |
References |
|
509 | (27) |
Index |
|
536 | |