Atnaujinkite slapukų nuostatas

Geodesic Convexity in Graphs 2013 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 112 pages, aukštis x plotis: 235x155 mm, weight: 1942 g, 41 Illustrations, black and white; VIII, 112 p. 41 illus., 1 Paperback / softback
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 06-Sep-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 146148698X
  • ISBN-13: 9781461486985
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 112 pages, aukštis x plotis: 235x155 mm, weight: 1942 g, 41 Illustrations, black and white; VIII, 112 p. 41 illus., 1 Paperback / softback
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 06-Sep-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 146148698X
  • ISBN-13: 9781461486985
Kitos knygos pagal šią temą:
????????Geodesic Convexity in Graphs is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various results, obtained during the last one and a half decade, relating these two invariants and some others such as convexity number, Steiner number, geodetic iteration number, Helly number, and Caratheodory number to a wide range a contexts, including products, boundary-type vertex sets, and perfect graph families. This monograph can serve as a supplement to a half-semester graduate course in geodesic convexity but is primarily a guide for postgraduates and researchers interested in topics related to metric graph theory and graph convexity theory. ?
1 Introduction
1(8)
1.1 Graph Theory
1(1)
1.2 Metric Graph Theory
2(4)
1.3 Convexity Spaces
6(1)
1.4 Graph Convexities
7(2)
2 Invariants
9(30)
2.1 Geodetic Closure and Convex Hull
9(1)
2.2 Geodetic and Hull Numbers
10(5)
2.3 Monophonic and m-Hull Numbers
15(2)
2.4 Convexity Number
17(6)
2.5 Forcing Geodomination
23(7)
2.6 Closed Geodomination
30(1)
2.7 Geodetic Domination
31(2)
2.8 k-Geodomination
33(1)
2.9 Edge Geodomination
34(2)
2.10 Classical Parameters
36(3)
3 Graph Operations
39(18)
3.1 Cartesian Product
39(4)
3.2 Strong Product
43(5)
3.3 Lexicographic Product
48(4)
3.4 Join
52(3)
3.5 Corona Product
55(2)
4 Boundary Sets
57(12)
5 Steiner Trees
69(12)
6 Oriented Graphs
81(10)
7 Computational Complexity
91(4)
Glossary 95(4)
References 99(8)
Index 107(4)
Symbol Index 111