Atnaujinkite slapukų nuostatas

Geodesic and Horocyclic Trajectories [Minkštas viršelis]

  • Formatas: Paperback / softback, 176 pages, aukštis x plotis: 234x156 mm, weight: 610 g, 110 Illustrations, black and white; XII, 176 p. 110 illus., 1 Paperback / softback
  • Serija: Universitext
  • Išleidimo metai: 25-Nov-2010
  • Leidėjas: Springer London Ltd
  • ISBN-10: 085729072X
  • ISBN-13: 9780857290724
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 176 pages, aukštis x plotis: 234x156 mm, weight: 610 g, 110 Illustrations, black and white; XII, 176 p. 110 illus., 1 Paperback / softback
  • Serija: Universitext
  • Išleidimo metai: 25-Nov-2010
  • Leidėjas: Springer London Ltd
  • ISBN-10: 085729072X
  • ISBN-13: 9780857290724
Kitos knygos pagal šią temą:
Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature ?1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.

Geodesic and Horocyclic Trajectories provides an introduction to the topological dynamics of classical flows. The text highlights gateways between some mathematical fields in an elementary framework, and describes the advantages of using them.
I Dynamics of Fuchsian groups
1(44)
1 Introduction to the planar hyperbolic geometry
1(13)
2 Positive isometries and Fuchsian groups
14(10)
3 Limit points of Fuchsian groups
24(8)
4 Geometric finiteness
32(9)
5 Comments
41(4)
II Examples of Fuchsian groups
45(34)
1 Schottky groups
45(9)
2 Encoding the limit set of a Schottky group
54(4)
3 The modular group and two subgroups
58(8)
4 Expansions of continued fractions
66(12)
5 Comments
78(1)
III Topological dynamics of the geodesic flow
79(18)
1 Preliminaries on the geodesic flow
79(4)
2 Topological properties of geodesic trajectories
83(6)
3 Periodic trajectories and their periods
89(5)
4 Dense trajectories
94(1)
5 Comments
95(2)
IV Schottky groups and symbolic dynamics
97(12)
1 Coding
98(2)
2 The density of periodic and dense trajectories
100(3)
3 Applications to the general case
103(4)
4 Comments
107(2)
V Topological dynamics of the horocycle flow
109(18)
1 Preliminaries
109(4)
2 The horocycle flow on a quotient
113(4)
3 Dense and periodic trajectories
117(5)
4 Geometrically finite Fuchsian groups
122(1)
5 Comments
123(4)
VI The Lorentzian point of view
127(16)
1 The hyperboloid model
128(6)
2 Dynamics of the geodesic flow
134(5)
3 Dynamics of the horocycle flow
139(3)
4 Comments
142(1)
VII Trajectories and Diophantine approximations
143(20)
1 Excursions of a geodesic ray into a cusp
144(5)
2 Geometrically badly approximated points
149(3)
3 Diophantine approximations
152(8)
4 Comments
160(3)
A Basic concepts in topological dynamics 163(4)
B Basic concepts in Riemannian geometry 167(4)
References 171(4)
Index 175