Atnaujinkite slapukų nuostatas

El. knyga: Geologic Fundamentals of Geothermal Energy

(Truckee Meadows Community College, Reno, Nevada, USA)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Geothermal energy stands out because it can be used as a baseload resource. This book, unlike others, examines the geology related to geothermal applications. Geology dictates (a) how geothermal resources can be found, (b) the nature of the geothermal resource (such as liquid- or vapor-dominated) and (c) how the resource might be developed ultimately (such as flash or binary geothermal plant). The compilation and distillation of geological elements of geothermal systems into a single reference fills a notable gap.

Recenzijos

"Anyone in the business of geothermal energy would find this book to be a valuable reference and an excellent treatise on why understanding the geological setting of geothermal systems is essential for a profitable enterprise. The book will also be of interest to geoscientists and engineers involved in the discovery and mining of metallic ore deposits." Jonathan G. Price, Nevada State Geologist Emeritus; Reno University of Nevada, Reno, USA

"I really like the focus on the geologic aspects of geothermal energy, and the description of the physical and chemical properties of water and its importance in extracting heat from the earth and altering the host rock is excellent. Im excited to bring this book into my classroom. The end-of-chapter questions are thought provoking and could be easily incorporated into an exam, in-class discussion or role-playing activity. I think this text will be an excellent contribution to geothermal energy classrooms and as a reference for geothermal geologists." Pete Stelling, Western Washington University, USA

"The topics are well thought out and organized. Dr. Boden has a rarely matched diversity of experience in metals exploration, geothermal exploration, and teaching in both subjects, which gives him a unique perspective and makes him eminently qualified to write this book." Mark Coolbaugh, Nevada Bureau of Mines and University of Nevada, Reno, USA

Series Preface xv
Preface xix
Acknowledgments xxi
Series Editor xxiii
Author xxv
Chapter 1 An Overview of Energy
1(18)
Key
Chapter Objectives
1(1)
Basic Terminology of Energy and Power
1(2)
Current Sources of Energy
3(11)
Nonrenewable Sources of Energy
3(1)
Fossil Fuels
3(2)
Nuclear Energy
5(1)
Renewable Sources of Energy
6(1)
Hydropower
6(1)
Biomass
7(1)
Wind
7(2)
Solar
9(1)
Geothermal
9(5)
Organization of Book
14(2)
Summary
16(1)
Suggested Problems
17(1)
References and Recommended Reading
17(2)
Chapter 2 Classification and Uses of Geothermal Systems
19(34)
Key
Chapter Objectives
19(1)
Classification Schemes
19(10)
Conductive vs. Convective Systems
19(1)
Conductive Systems
20(2)
Convective Systems
22(2)
Liquid- and Vapor-Dominated Systems
24(1)
Vapor-Dominated Systems
24(1)
Liquid-Dominated Systems
24(1)
Temperature and Uses
25(1)
Low-Enthalpy Systems
26(1)
Moderate- and High-Enthalpy Systems
26(1)
Geologic and Tectonic Setting
27(2)
Magmatic vs. Amagmatic Systems
29(1)
Types of Geothermal Energy Plants
29(13)
Dry Steam Power Plants
30(1)
Flash Power Plants
31(2)
Binary Geothermal Power Plants
33(2)
Hybrid Power Plants
35(6)
Importance of Condensers and Power Output
41(1)
Direct Use of Geothermal Energy
42(6)
Direct Use of Geothermal Fluids
44(1)
Case Study: Moana Geothermal Field in Reno, Nevada
44(1)
Ground-Source Heat Pumps (Geoexchange or Geothermal Heat Pumps)
45(2)
Case Study: Kendyl DePoali Middle School in Reno, Nevada
47(1)
Summary
48(1)
Suggested Problems
48(1)
References and Recommended Reading
49(4)
Chapter 3 Geology and Heat Architecture of the Earth's Interior
53(18)
Key
Chapter Objectives
53(1)
Earth's Compositional and Rheological Layers
53(5)
Earth's Compositional Layers
54(1)
Earth's Rheological (Physical) Layers
55(1)
Lithosphere
56(1)
Asthenosphere
56(1)
Mesosphere
56(1)
Outer Core
57(1)
Inner Core
57(1)
Evidence of Earth's Compositional and Rheological Layers
57(1)
Sources of Earth's Heat
58(1)
Heat Transfer Mechanisms in the Earth
59(7)
Conductive Heat Flow
61(2)
Convective (Advective) Heat Flow
63(1)
Rayleigh Number
63(1)
Convection in the Upper Crust
64(2)
Heat Flow Maps
66(2)
Summary
68(1)
Suggested Problems
69(1)
References and Recommended Reading
69(2)
Chapter 4 Fundamental Geologic Elements of Geothermal Systems
71(36)
Key
Chapter Objectives
71(1)
Plate Tectonics
72(13)
Divergent Plate Boundaries
72(3)
Convergent Plate Boundaries
75(5)
Transform Plate Boundaries
80(3)
Intraplate Settings
83(2)
Earth Materials
85(8)
Igneous Rocks
86(4)
Sedimentary Rocks
90(3)
Metamorphic Rocks
93(1)
Tectonic Settings of Rock Groups
93(2)
Earth Forces and Geologic Structures
95(6)
Stress vs. Strain
95(1)
Ductile Structures
96(1)
Brittle Structures
97(4)
Summary
101(2)
Suggested Problems
103(1)
References and Recommended Reading
104(3)
Chapter 5 Subsurface Flow of Geothermal Fluids
107(18)
Key
Chapter Objectives
107(1)
Primary Matrix Porosity and Permeability
107(4)
Fracture Porosity and Permeability
111(2)
Hydraulic Fracture Conductivity and Permeability
112(1)
Fracture Transmissivity
112(1)
Flow Rates and Power Output
113(2)
Changes in Porosity and Permeability with Depth
115(1)
Porosity and Permeability of Producing Geothermal Reservoirs
115(1)
Geologic Examples of Matrix Porosity
116(3)
Fracture Permeability and Crustal Extension
119(2)
Summary
121(1)
Suggested Activities
122(1)
Suggested Problems
123(1)
References and Recommended Reading
124(1)
Chapter 6 Physical and Chemical Characteristics of Geothermal Systems
125(34)
Key
Chapter Objectives
125(1)
Thermodynamic Characteristics of Water
125(9)
Heat Capacity and Specific Heat
126(1)
Polar Nature
126(3)
Water Phase Relationships and Critical Point
129(3)
Pressure and Enthalpy (Heat) Relationships
132(2)
Liquid-Dominated Geothermal Systems
134(14)
Temperature Range of Fluids
135(1)
Fluid Compositions
136(3)
Wallrock Alteration
139(3)
Low-Sulfidation Alteration
142(2)
High-Sulfidation Alteration
144(1)
Steam-Heated Acid-Sulfate and Bicarbonate Alteration
145(3)
Alteration Associated with Hypersaline Brine Systems
148(1)
Vapor-Dominated Geothermal Systems
148(5)
Formation and Rarity
149(1)
Surface Wallrock Alteration
149(1)
Artificially Produced Vapor-Dominated Systems
150(1)
Matsukawa Geothermal System, Japan
151(1)
Te Mihi Geothermal Field, Wairakei, New Zealand
151(2)
Summary
153(2)
Suggested Problems
155(1)
References and Recommended Reading
156(3)
Chapter 7 Geologic and Tectonic Settings of Select Geothermal Systems
159(52)
Key
Chapter Objectives
159(1)
Magmatic and Amagmatic Geothermal Systems
159(3)
Magmatic Geothermal Systems
160(1)
Amagmatic Geothermal Systems
161(1)
Exploration and Production Implications of Magmatic and Amagmatic Systems
162(1)
Tectonic Settings of Select Geothermal Systems
162(41)
Divergent Setting of Icelandic Geothermal Systems
163(3)
Convergent Continental and Island Volcanic Arcs
166(4)
Convergent Back-Arc or Intra-Arc Extension
170(2)
Magmatic Intra-Arc Extensional Setting
172(2)
Amagmatic Back-Arc Extensional Setting
174(4)
Continental Convergent Setting
178(1)
Yangbajing, Tibet
179(2)
Yangyi, Tibet
181(3)
Transform Boundary Settings
184(1)
San Andreas Fault System
184(5)
Walker Lane and Eastern California Shear Zone
189(4)
Continental Rifting and Geothermal Systems
193(1)
Magmatic East African Rift Zone
193(3)
Amagmatic Northern Basin and Range Province
196(2)
Hot Spots and Associated Geothermal Systems
198(1)
Hawaii
199(2)
The Azores
201(1)
Stable Cratons
201(1)
Intracratonic Oil-Bearing Sedimentary Basins
202(1)
Buried Radiogenic Granitic Rocks
202(1)
Paris Sedimentary Basin
203(1)
Suggested Problems
203(2)
References and Recommended Reading
205(6)
Chapter 8 Exploration and Discovery of Geothermal Systems
211(50)
Key
Chapter Objectives
211(1)
Introduction
211(2)
Literature Review
213(1)
Spaceborne and Airborne Studies
214(8)
Remote Sensing Studies
215(1)
Optical Spectroscopic Investigations
215(1)
InSAR Studies
216(2)
LiDAR Studies
218(1)
Aerial Photography
219(1)
Aeromagnetic Studies
220(2)
Geologic Studies
222(10)
Tectonic Setting
222(1)
Geologic Mapping
222(1)
Geologic Environments
223(1)
Hydrothermal Alteration Mapping
223(4)
Mapping of Geothermal Deposits
227(3)
Structural Analysis
230(2)
Geochemical Studies
232(9)
Fluid Composition and Reservoir Type
232(1)
Geochemical Thermometers (Geothermometers)
233(1)
Silica Geothermometer
234(3)
Na--K Geothermometer
237(1)
Na--K--Ca Geothermometer
237(1)
Mineral Equilibria Method of Geothermometry
238(3)
Gas Geothermometers
241(1)
Isotope Geothermometers
241(1)
Geophysical Exploration Techniques
241(8)
Resistivity and Magnetotelluric Studies
242(2)
Gravity Studies
244(4)
Seismic Surveys
248(1)
Temperature Surveys
249(5)
Shallow Temperature Surveys
250(3)
Temperature-Gradient Drilling
253(1)
Summary
254(4)
Suggested Problems
258(1)
References and Recommended Reading
258(3)
Chapter 9 Environmental Aspects of Using Geothermal Energy
261(28)
Key
Chapter Objectives
261(1)
Introduction
261(1)
Environmental Benefits of Geothermal Resources
262(14)
Gaseous Emissions
262(5)
Land Usage
267(5)
Solids Discharge to Air and Ground
272(1)
Water Usage
273(1)
Noise
274(2)
Visual Elements
276(1)
Environmental Challenges of Geothermal Operations
276(9)
Land Subsidence
277(3)
Induced Seismicity
280(3)
Disturbance of Hydrothermal Surface Manifestations
283(2)
Summary
285(1)
Suggested Problems
286(1)
References and Recommended Reading
286(3)
Chapter 10 Geothermal Systems and Mineral Deposits
289(34)
Key
Chapter Objectives
289(1)
Overview
289(3)
Young Mineral Deposits and Active Geothermal Systems
292(25)
Young Magmatic Mineralized Geothermal/Epithermal Systems
293(1)
Hishikari Gold Mine and Noya GoldDeposit, Kyushu, Japan
293(4)
McLaughlin Mine, California
297(2)
Ladolam Gold Deposit and Geothermal System, Lihir Island, New Guinea
299(5)
Long Valley Gold Deposit and Casa Diablo Geothermal System, California
304(4)
Steamboat Springs Geothermal System, Western Nevada
308(2)
Young Amagmatic Mineralized Geothermal Systems
310(2)
Florida Canyon Gold Deposit and Humboldt House Geothermal System
312(2)
Hycroft Mine and Geothermal System
314(2)
San Emidio Geothermal System and the Wind Mountain Mine
316(1)
Summary
317(1)
Suggested Problems
318(1)
References and Recommended Reading
318(5)
Chapter 11 Next-Generation Geothermal
323(42)
Key
Chapter Objectives
323(1)
Overview
323(2)
Hydroshearing vs. Hydraulic Fracturing
325(1)
Enhanced and Engineered Geothermal Systems
326(20)
Enhanced Geothermal Systems
327(1)
Desert Peak, Nevada
328(3)
Raft River, Idaho
331(2)
Northwest Geysers Project, California
333(4)
Engineered Geothermal Systems
337(1)
Newberry Volcano, Oregon
338(2)
Rhine Graben, Germany and France
340(4)
Supercritical CO2 in Engineered Geothermal Systems
344(2)
Deep, Hot Sedimentary Aquifers
346(12)
Potential Stratigraphic Reservoirs in the Great Basin, Western United States
347(2)
Deep Carbonate Reservoirs of the Molasse Basin, Germany
349(1)
Paris Basin Direct Use
349(1)
Supercritical Water Systems
350(3)
Iceland Deep Drilling Project
353(1)
Japan Beyond-Brittle Project
354(3)
Hotter and Deeper Exploration Science, New Zealand
357(1)
Summary
358(3)
Suggested Problems
361(1)
References and Recommended Reading
361(4)
Chapter 12 Future Considerations of Geothermal Energy
365(18)
Key
Chapter Objectives
365(1)
Introduction
365(1)
Renewable vs. Sustainable in Development of Geothermal Energy
366(2)
Summary of Encouraging Indicators
368(7)
Baseload and High Capacity Factor
368(1)
Environmental Aspects
369(1)
Fuel Sources Not Needed and Low Operating Costs
370(1)
Emerging Technologies and Geologic Settings
371(1)
Potential Flexible Load Provider
372(2)
Future Role of Geothermal Heat Pumps
374(1)
Challenges to Development
375(4)
Risk, High Upfront Costs, and Short-Term Investor Focus
375(1)
Water Availability
376(1)
Political Whims and Governmental Regulations
377(2)
Final Assessment
379(1)
References and Recommended Reading
380(3)
Index 383
Boden, David R.