Atnaujinkite slapukų nuostatas

Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology 1st ed. Softcover of orig. ed. 1996 [Minkštas viršelis]

  • Formatas: Paperback / softback, 582 pages, aukštis x plotis: 279x210 mm, weight: 1469 g, XVI, 582 p., 1 Paperback / softback
  • Išleidimo metai: 18-Dec-2010
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642082114
  • ISBN-13: 9783642082115
  • Formatas: Paperback / softback, 582 pages, aukštis x plotis: 279x210 mm, weight: 1469 g, XVI, 582 p., 1 Paperback / softback
  • Išleidimo metai: 18-Dec-2010
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642082114
  • ISBN-13: 9783642082115
Fluvial deposits represent the preserved record of one of the major nonmarine environ­ ments. They accumulate in large and small intermontane valleys, in the broad valleys of trunk rivers, in the wedges of alluvial fans flanking areas of uplift, in the outwash plains fronting melting glaciers, and in coastal plains. The nature of alluvial assemblages - their lithofacies composition, vertical stratigraphic record, and architecture - reflect an inter­ play of many processes, from the wandering of individual channels across a floodplain, to the long-term effects of uplift and subsidence. Fluvial deposits are a sensitive indicator of tectonic processes, and also carry subtle signatures of the climate at the time of deposition. They are the hosts for many petroleum and mineral deposits. This book is about all these subjects. The first part of the book, following a historical introduction, constructs the strati­ graphic framework of fluvial deposits, step by step, starting with lithofacies, combining these into architectural elements and other facies associations, and then showing how these, in turn, combine to represent distinctive fluvial styles. Next, the discussion turns to problems of correlation and the building of large-scale stratigraphic frameworks. These basin-scale constructions form the basis for a discussion of causes and processes, including autogenic processes of channel shifting and cyclicity, and the larger questions of allogenic (tectonic, eustatic, and climatic) sedimentary controls and the development of our ideas about nonmarine sequence stratigraphy.

Recenzijos

"...it acts as a splendid source of research material and problems, because not much has missed Andrew Mialls eagle eye." Jnl of Sedimentary Research

Daugiau informacijos

Springer Book Archives
1 Introduction
1(4)
1.1 Scope and Purpose of Book
1(1)
1.2 Data Sources
2(3)
2 Historical Background
5(52)
2.1 Introduction
5(1)
2.2 Early Developments in the Study of Fluvial Sediments
5(8)
2.2.1 From the Ancient Greeks to Playfair
5(3)
2.2.2 From Lyell to Davis
8(5)
2.3 Growth of Present-Day Concepts, up to 1977
13(24)
2.3.1 Increasing Specialization of the Twentieth Century
13(1)
2.3.2 Descriptive Fluvial Geomorphology
13(3)
2.3.3 Quantitative Fluvial Geomorphology
16(1)
2.3.4 Sediment Transport and Textural Studies
17(2)
2.3.5 Bedforms and Paleocurrents
19(3)
2.3.6 Fluvial Facies Models
22(1)
2.3.6.1 From Hobbs to Fisk
22(4)
2.3.6.2 Meandering River Deposits: Development of Modern Facies Model Concepts
26(4)
2.3.6.3 Braided Rivers
30(1)
2.3.6.4 Alluvial Fans
31(1)
2.3.6.5 Other Facies Models
32(2)
2.3.7 Fluvial Architecture
34(1)
2.3.8 Paleohydraulics
35(2)
2.4 Growth of Present-Day Concepts, 1978-1988
37(18)
2.4.1 Bedforms and Sedimentary Structures
37(1)
2.4.2 The Decline and Fall of the Vertical Profile
38(4)
2.4.3 Fluvial Architecture
42(1)
2.4.3.1 Architectural Scale and the Bounding-Surface Concept
42(3)
2.4.3.2 Alluvial Basin Architecture
45(2)
2.4.4 Fluvial Styles
47(2)
2.4.4.1 High-Sinuosity Rivers
49(1)
2.4.4.2 Low-Sinuosity Rivers
50(2)
2.4.4.3 Anastomosed Rivers
52(2)
2.4.4.4 Ephemeral Rivers
54(1)
2.4.4.5 Large Rivers
54(1)
2.4.4.6 Floodplain Environments
54(1)
2.5 Conclusions
55(2)
3 Concepts of Scale
57(18)
3.1 Time Scales and Physical Scales in Sedimentation
57(3)
3.2 The Grouping of Architectural Units in Clastic Rocks According to Depositional Time Scale
60(9)
3.3 Definition of Sediment Groups by Bounding Surfaces
69(2)
3.4 Sedimentation Rate and Its Relation to Depositional Recurrence Interval
71(3)
3.5 Application of Scale Concepts to Basin Analysis and Petroleum Geology
74(1)
4 Methods of Architectural-Element Analysis
75(24)
4.1 Introduction
75(1)
4.2 Construction of Outcrop Profiles
75(2)
4.3 Classification of Lithofacies
77(1)
4.4 Principles of Paleocurrent Analysis
78(3)
4.5 Classification of Bounding Surfaces
81(8)
4.6 Classification of Architectural Elements
89(5)
4.7 Classification of Channels and Larger Bodies
94(1)
4.8 Annotation of Outcrop Profiles
95(3)
4.9 Summary of Methods
98(1)
5 Lithofacies
99(32)
5.1 Introduction
99(1)
5.2 Gravel Facies
99(10)
5.2.1 Depositional Processes in Gravel-Bed Rivers
99(1)
5.2.1.1 Introduction
99(1)
5.2.1.2 Traction Currents, Fluid Flows
99(6)
5.2.1.3 Sediment Gravity Flows
105(1)
5.2.2 Gravel Lithofacies
106(3)
5.3 Sand Facies
109(14)
5.3.1 Sand Bedform Genesis and Classification
109(3)
5.3.2 Sand Lithofacies
112(11)
5.4 Fine-Grained Clastic Facies
123(4)
5.5 Nonclastic Facies
127(3)
5.6 Associated Facies
130(1)
6 Architectural Elements Formed Within Channels
131(38)
6.1 Introduction
131(1)
6.2 Channels (Element CH)
131(8)
6.3 Gravel Bars and Bedforms (Element GB)
139(6)
6.4 Sediment-Gravity-Flow Deposits (Element SG)
145(1)
6.5 Sandy Bedforms (Element SB)
146(5)
6.6 Downstream-Accretion Macroforms (Element DA)
151(4)
6.7 Lateral-Accretion Deposits (Element LA)
155(8)
6.8 Laminated Sand Sheets (Element LS)
163(1)
6.9 Hollows (Element HO)
163(6)
7 Architectural Elements of the Overbank Environment
169(22)
7.1 Introduction
169(3)
7.2 Levee and Crevasse Deposits
172(4)
7.2.1 Levee Deposits (Element LV)
172(1)
7.2.2 Crevasse-Channel Deposits (Element CR)
173(1)
7.2.3 Crevasse-Splay Deposits (Element CS)
174(2)
7.3 Fine-Grained Clastic Deposits
176(2)
7.3.1 Floodplain Fines (Element FF)
177(1)
7.3.2 Abandoned Channel Fills (Element FF(CH))
177(1)
7.4 Biochemical Sediments
178(13)
7.4.1 Coal
179(4)
7.4.2 Paleosols
183(7)
7.4.3 Evaporites
190(1)
8 Fluvial Styles and Facies Models
191(60)
8.1 Controls on Channel Style
191(7)
8.2 Facies Models
198(47)
8.2.1 Gravel-Bed Braided River with Sediment-Gravity-Flow Deposits
206(2)
8.2.2 Shallow, Gravel-Bed Braided River
208(1)
8.2.3 Deep, Gravel-Bed Braided River
209(2)
8.2.4 Gravel-Bed, Wandering River
211(1)
8.2.5 Gravel-Bed, Meandering River
212(3)
8.2.6 Gravel-Sand Meandering River
215(2)
8.2.7 Sand-Bed Meandering River
217(2)
8.2.8 Ephemeral, Sand-Bed Meandering River
219(3)
8.2.9 Fine-Grained Meandering River
222(7)
8.2.10 Anastomosed River
229(4)
8.2.11 Low-Sinuosity River, with Alternate Bars
233(1)
8.2.12 Shallow, Perennial, Sand-Bed Braided River
234(1)
8.2.13 Deep, Perennial, Sand-Bed Braided River
235(3)
8.2.14 High-Energy, Sand-Bed Braided River
238(2)
8.2.15 Distal, Sheetflood, Sand-Bed River
240(3)
8.2.16 Flashy, Ephemeral, Sheetflood, Sand-Bed River
243(2)
8.3 Alluvial Fans and Other Fluvial Distributary Systems
245(6)
9 The Stratigraphic Architecture of Fluvial Depositional Systems
251(60)
9.1 Introduction
251(1)
9.2 Channel Belts
251(10)
9.3 Depositional Systems
261(4)
9.4 Basin-fill Complexes
265(7)
9.5 Methods of Correlation and Mapping
272(34)
9.5.1 The Use of Marker Beds
272(1)
9.5.2 Wireline Logs
273(3)
9.5.3 Lithofacies Mapping
276(7)
9.5.4 Seismic Methods
283(9)
9.5.5 Ground-Penetrating Radar
292(1)
9.5.6 Magnetostratigraphy
293(1)
9.5.7 Paleocurrent Analysis
293(5)
9.5.8 The Dipmeter
298(4)
9.5.9 Surveillance Geology
302(4)
9.6 Stratigraphic Nomenclature
306(5)
10 Fluvial Depositional Systems and Autogenic Sedimentary Controls
311(32)
10.1 Introduction
311(1)
10.2 The Evolution of Distributary Fluvial Systems
311(6)
10.3 Avulsion in Fluvial Systems and Its Effect on Alluvial Stratigraphy
317(10)
10.3.1 The Development of Meander Belts
318(4)
10.3.2 Avulsion in Braided Fluvial Systems
322(3)
10.3.3 Avulsion in Anastomosed Fluvial Systems
325(2)
10.4 Quantitative Studies of Alluvial Architecture
327(16)
10.4.1 The Dimensions of Fluvial Sand Bodies
328(6)
10.4.2 Estimating Probabilities of Sand Body Penetration and Interconnectedness in the Subsurface
334(3)
10.4.3 Alluvial Stratigraphy Models
337(6)
11 Tectonic Control of Fluvial Sedimentation
343(78)
11.1 Introduction
343(1)
11.2 Tectonic Control of Alluvial Stratigraphy
343(19)
11.2.1 The Effects of Syndepositional Fault and Fold Movements
344(1)
11.2.1.1 The Effects of Basin-Margin Faulting
344(4)
11.2.1.2 The Effects of Faulting and Folding Within Basins
348(4)
11.2.2 Base-Level Changes
352(10)
11.3 Tectonic Control of Basin Style and Basin-Scale Fluvial Patterns
362(14)
11.3.1 Big Rivers
362(2)
11.3.2 Axial and Transverse Drainage
364(1)
11.3.3 Regional Tectonic Control Revealed by Basin Analysis
365(2)
11.3.4 Tectonism and Sediment Supply
367(3)
11.3.5 Intraplate Stress
370(2)
11.3.6 Quantitative Models of Sediment Supply, Transfer, and Accumulation
372(4)
11.4 Plate-Tectonic Setting of Alluvial Basins
376(36)
11.4.1 Basin Classification
376(1)
11.4.2 Extensional Basins
377(2)
11.4.2.1 Rift Basins
379(2)
11.4.2.2 Continental-margin Basins
381(1)
11.4.2.3 Failed Rifts and Aulacogens
382(4)
11.4.3 Convergent-margin Basins
386(1)
11.4.3.1 Forearc Basins
386(1)
11.4.3.2 Backarc Basins
386(1)
11.4.3.3 Retroarc (Foreland) Basins
387(6)
11.4.4 Basins Formed Along Strike-Slip Faults
393(1)
11.4.4.1 Basins Associated with Intracontinental Transform Faults
393(1)
11.4.4.2 Basins Associated with Divergent Plate Boundaries
394(1)
11.4.5 Basins Related to Plate Collision
395(2)
11.4.5.1 Peripheral Foreland Basins
397(3)
11.4.5.2 Hinterland Basins
400(2)
11.4.6 Structural and Stratigraphic Patterns Common to Foreland Basins
402(7)
11.4.7 Sedimentary Basins and Allochthonous Terranes
409(3)
11.4.8 Cratonic Basins
412(1)
11.5 Basic Paleogeographic Models for Nonmarine Basins
412(9)
12 What Does Fluvial Lithofacies Reveal About Climate?
421(32)
12.1 Introduction
421(1)
12.2 Climatic Variables
422(1)
12.3 Distinguishing Tectonic from Climatic Control
423(2)
12.4 Review of Climatic Criteria
425(1)
12.5 Conglomerates: The Significance of Texture and Petrology
425(8)
12.5.1 Mass-flow Versus Traction-current Processes
425(3)
12.5.1.1 Arid Climates
428(2)
12.5.1.2 Temperate-Humid Climates
430(1)
12.5.1.3 Tropical-Humid Climates
430(1)
12.5.1.4 Boreal-Paraglacial Climates
431(1)
12.5.1.5 Summary and Conclusions
431(1)
12.5.2 The Influence of Climate on Texture and Composition of Gravels
432(1)
12.6 Sandstones: The Significance of Sand Body Architecture and Sedimentary Structures
433(4)
12.6.1 Fluvial Style in Sand-bed Rivers
433(1)
12.6.2 Sand Body Architecture
434(2)
12.6.3 Bedforms and Cycles
436(1)
12.7 Overbank Fines: The Significance of Bedding and Minor Sedimentary Structures
437(2)
12.8 The Significance of Color
439(1)
12.9 Associated Clastic, Chemical, and Biochemical Sediments
439(3)
12.9.1 Coal
439(1)
12.9.2 Paleosols
440(1)
12.9.3 Evaporites
441(1)
12.9.4 Eolian Interbeds
441(1)
12.9.5 Palustrine Limestones
442(1)
12.10 Contrasting Climatic Indicators
442(1)
12.11 The Interrelationship Between Tectonics and Climate
443(1)
12.12 Orbital Forcing
444(6)
12.12.1 Sedimentary Evidence of Orbital Forcing
444(3)
12.12.2 Fluvial Response to the Late Cenozoic Glaciations
447(3)
12.12.3 Conclusions
450(1)
12.13 Discussion
450(3)
13 Sequence Stratigraphy
453(26)
13.1 Introduction
453(3)
13.2 Accommodation Space
456(3)
13.3 Main Components of the Fluvial Sequence Model
459(16)
13.3.1 Sequence Boundary
459(7)
13.3.2 Lowstand Systems Tract
466(5)
13.3.3 Transgressive Systems Tract
471(3)
13.3.4 Equivalent of Maximum Flooding Surface
474(1)
13.3.5 Highstand Systems Tract
474(1)
13.3.6 Falling-stage Systems Tract
475(1)
13.4 Time Scales of Nonmarine Sequences and Their Causes
475(2)
13.4.1 First-order Cycles
476(1)
13.4.2 Second-order Cycles
476(1)
13.4.3 Third-order Cycles
477(1)
13.4.4 Fourth- and Fifth-order Cycles
477(1)
13.5 Discussion
477(2)
14 Stratigraphic and Tectonic Controls on the Distribution and Architecture of Fluvial Oil and Gas Reservoirs
479(16)
14.1 Introduction
479(1)
14.2 The Geometry of Fluvial Reservoirs
480(6)
14.2.1 Geometry and Origin of Depositional Systems
480(1)
14.2.1.1 Clastic Wedges
480(2)
14.2.1.2 Paleovalley Fills
482(2)
14.2.2 Geometry of Reservoir Bodies
484(1)
14.2.2.1 Sheet Sandstones
484(1)
14.2.2.2 Sandstone Ribbons and Lenses
484(1)
14.2.2.3 Stratigraphic Variations in Reservoir Geometry
485(1)
14.3 Tectonic Setting of Fluvial Reservoirs
486(3)
14.3.1 Retroarc (Backarc) Foreland Basins
486(1)
14.3.2 Backarc Basins
486(1)
14.3.3 Forearc Basins
486(1)
14.3.4 Collision-Related Basins
486(1)
14.3.5 Basins in Continental-Transform Settings
487(1)
14.3.6 Rift Basins
487(1)
14.3.7 Basins on Extensional Continental Margins
487(1)
14.3.8 Intracratonic Basins
487(2)
14.4 Styles of Fluvial Reservoir
489(5)
14.4.1 Paleovalley Bodies (PV Type)
490(1)
14.4.2 Sheet Bodies (SH Type)
491(1)
14.4.3 Channel-and-Bar Bodies (CB Type)
492(2)
14.5 Conclusions
494(1)
15 Case Studies of Oil and Gas Fields in Fluvial Reservoirs
495(28)
15.1 Introduction
495(1)
15.2 Paleovalley Fields (PV Type)
495(11)
15.2.1 Little Bow Area, Alberta
495(6)
15.2.2 Cut Bank Sandstone, Montana
501(1)
15.2.3 Zenith Field, Colorado
502(4)
15.2.4 South Ceres Field, Oklahoma
506(1)
15.3 Sheet Reservoirs (SH Type)
506(7)
15.3.1 Prudhoe Bay Field, Alaska
506(3)
15.3.2 Messla Field, Libya
509(2)
15.3.3 Statfjord Field, North Sea
511(2)
15.4 Channel-and-Bar Reservoirs (CB Type)
513(10)
15.4.1 Little Creek Field, Mississippi
513(2)
15.4.2 Daqing Field, China
515(4)
15.4.3 Red Wash Field, Utah
519(4)
16 Future Research Trends
523(2)
References 525(42)
Author Index 567(8)
Subject Index 575