Atnaujinkite slapukų nuostatas

Geometric Analysis on the Heisenberg Group and Its Generalizations [Kietas viršelis]

  • Formatas: Hardback, weight: 600 g, Illustrations
  • Serija: AMS/IP Studies in Advanced Mathematics
  • Išleidimo metai: 01-May-2007
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821843192
  • ISBN-13: 9780821843192
  • Formatas: Hardback, weight: 600 g, Illustrations
  • Serija: AMS/IP Studies in Advanced Mathematics
  • Išleidimo metai: 01-May-2007
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821843192
  • ISBN-13: 9780821843192
Although designed as a course or seminar text for graduate students interested in developments in the subReimannian manifolds (manifolds with the Heisenberg principle built in) and sub-elliptic operators theory, this also works as a resource for pure and applied mathematicians and theoretical physics working in quantum mechanics. One of the authors' most interesting innovations is introducing the complex Hamiltonian mechanics techniques and use them to describe the fundamental solutions and heat propagators in quantum mechanics. They introduce geometric mechanics on the Heisenberg group, then give geometric analyses of the step 4 case, the step 2(k+1) case, the geometry of higher dimensional Heisenberg groups, complex Hamiltonian mechanics and quantum mechanics on the Hiesenberg group. The result is fresh and lively while also being thorough. The authors provide exercises for each chapter. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)
Preface vii
Geometric Mechanics on the Heisenberg Group
1(44)
Definitions for the Heisenberg group
1(6)
The horizontal distribution
7(3)
Horizontal connectivity theorem
10(3)
Hamiltonian formalism on the Heisenberg group
13(5)
The connection form
18(5)
Lagrangian formalism on the Heisenberg group
23(15)
Carnot-Caratheodory distance
38(4)
Exercises
42(3)
Geometric Analysis of Step 4 Case
45(40)
Elliptic functions
45(2)
The horizontal distribution
47(4)
SubRiemannian geodesies
51(2)
Lagrangian formalism
53(3)
Solutions which start from the origin
56(8)
The length of the geodesies between the origin and (0, 0, t)
64(5)
Explicit solutions connecting the origin to (0, 0, t)
69(2)
Solutions which start outside the origin
71(7)
Geodesies between the origin and points away from the t-axis
78(4)
Geodesic completeness in step 4 case
82(1)
Exercises
82(3)
The Geometric Analysis of Step 2(k + 1) Case
85(40)
The horizontal distribution
85(1)
Horizontal connectivity
86(2)
SubRiemannian geodesics
88(3)
Euler-Lagrange system in polar coordinates
91(1)
Geodesies starting at the origin
91(6)
Carnot-Caratheodory distances from the origin
97(3)
Particular cases
100(5)
Conjugate points to the origin
105(1)
The use of the hypergeometric function
106(4)
Geodesics starting outside the origin
110(3)
Geodesic completeness
113(2)
Global connectivity by geodesies
115(2)
Kaehler metrics
117(1)
The classical action
118(4)
Exercises
122(3)
Geometry on Higher Dimensional Heisenberg Groups
125(20)
The Heisenberg group Hn
125(1)
Hamiltonian mechanics on Hn
126(3)
The classical action
129(1)
The horizontal distribution
129(1)
The Carnot-Caratheodory distance
130(6)
The shortest geodesic
136(4)
Caustics
140(1)
Exercises
141(4)
Complex Hamiltonian Mechanics
145(54)
The harmonic oscillator and the Heisenberg group
145(2)
The quantum Hamiltonian
147(1)
Complex subRiemannian geodesics
147(1)
Complex subRiemannian geodesics on the Heisenberg group
148(5)
Complex connectivity
153(9)
The complex action
162(4)
Hamilton-Jacobi equation
166(3)
Geodesic completeness
169(2)
Solving Hamilton-Jacobi equation
171(3)
Theorem of Jacobi and applications
174(3)
The lengths of the real geodesies
177(7)
Modified complex action function on Hn
184(4)
A geometric formula for the fundamental solution
188(2)
The volume element on the Heisenberg group
190(4)
Exercises
194(5)
Quantum Mechanics on the Heisenberg group
199(40)
Linear Harmonic Oscillator
199(2)
The operators Z and Z and the energy quantification
201(2)
The ground-state ψo and the states ψn
203(3)
The operator ∂τ - Z
206(5)
Heisenberg derivative
211(1)
The fundamental solution for ΔH
212(1)
The fundamental solution for Δλ = ΔH - i/2λ[ X1, X2]
213(2)
An application to the eigenfunctions of ΔH
215(1)
The Schrodinger kernel
216(6)
The heat kernel on H1
222(6)
Maxwell's equations
228(5)
Quantization of energy
233(2)
Kepler-type laws
235(1)
Exercises
236(3)
Bibliography 239(1)
Bibliography 239(2)
Index 241