Preface |
|
vii | |
|
Geometric Mechanics on the Heisenberg Group |
|
|
1 | (44) |
|
Definitions for the Heisenberg group |
|
|
1 | (6) |
|
The horizontal distribution |
|
|
7 | (3) |
|
Horizontal connectivity theorem |
|
|
10 | (3) |
|
Hamiltonian formalism on the Heisenberg group |
|
|
13 | (5) |
|
|
18 | (5) |
|
Lagrangian formalism on the Heisenberg group |
|
|
23 | (15) |
|
Carnot-Caratheodory distance |
|
|
38 | (4) |
|
|
42 | (3) |
|
Geometric Analysis of Step 4 Case |
|
|
45 | (40) |
|
|
45 | (2) |
|
The horizontal distribution |
|
|
47 | (4) |
|
|
51 | (2) |
|
|
53 | (3) |
|
Solutions which start from the origin |
|
|
56 | (8) |
|
The length of the geodesies between the origin and (0, 0, t) |
|
|
64 | (5) |
|
Explicit solutions connecting the origin to (0, 0, t) |
|
|
69 | (2) |
|
Solutions which start outside the origin |
|
|
71 | (7) |
|
Geodesies between the origin and points away from the t-axis |
|
|
78 | (4) |
|
Geodesic completeness in step 4 case |
|
|
82 | (1) |
|
|
82 | (3) |
|
The Geometric Analysis of Step 2(k + 1) Case |
|
|
85 | (40) |
|
The horizontal distribution |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (3) |
|
Euler-Lagrange system in polar coordinates |
|
|
91 | (1) |
|
Geodesies starting at the origin |
|
|
91 | (6) |
|
Carnot-Caratheodory distances from the origin |
|
|
97 | (3) |
|
|
100 | (5) |
|
Conjugate points to the origin |
|
|
105 | (1) |
|
The use of the hypergeometric function |
|
|
106 | (4) |
|
Geodesics starting outside the origin |
|
|
110 | (3) |
|
|
113 | (2) |
|
Global connectivity by geodesies |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
118 | (4) |
|
|
122 | (3) |
|
Geometry on Higher Dimensional Heisenberg Groups |
|
|
125 | (20) |
|
|
125 | (1) |
|
Hamiltonian mechanics on Hn |
|
|
126 | (3) |
|
|
129 | (1) |
|
The horizontal distribution |
|
|
129 | (1) |
|
The Carnot-Caratheodory distance |
|
|
130 | (6) |
|
|
136 | (4) |
|
|
140 | (1) |
|
|
141 | (4) |
|
Complex Hamiltonian Mechanics |
|
|
145 | (54) |
|
The harmonic oscillator and the Heisenberg group |
|
|
145 | (2) |
|
|
147 | (1) |
|
Complex subRiemannian geodesics |
|
|
147 | (1) |
|
Complex subRiemannian geodesics on the Heisenberg group |
|
|
148 | (5) |
|
|
153 | (9) |
|
|
162 | (4) |
|
|
166 | (3) |
|
|
169 | (2) |
|
Solving Hamilton-Jacobi equation |
|
|
171 | (3) |
|
Theorem of Jacobi and applications |
|
|
174 | (3) |
|
The lengths of the real geodesies |
|
|
177 | (7) |
|
Modified complex action function on Hn |
|
|
184 | (4) |
|
A geometric formula for the fundamental solution |
|
|
188 | (2) |
|
The volume element on the Heisenberg group |
|
|
190 | (4) |
|
|
194 | (5) |
|
Quantum Mechanics on the Heisenberg group |
|
|
199 | (40) |
|
Linear Harmonic Oscillator |
|
|
199 | (2) |
|
The operators Z and Z and the energy quantification |
|
|
201 | (2) |
|
The ground-state ψo and the states ψn |
|
|
203 | (3) |
|
|
206 | (5) |
|
|
211 | (1) |
|
The fundamental solution for ΔH |
|
|
212 | (1) |
|
The fundamental solution for Δλ = ΔH - i/2λ[ X1, X2] |
|
|
213 | (2) |
|
An application to the eigenfunctions of ΔH |
|
|
215 | (1) |
|
|
216 | (6) |
|
|
222 | (6) |
|
|
228 | (5) |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
236 | (3) |
Bibliography |
|
239 | (1) |
Bibliography |
|
239 | (2) |
Index |
|
241 | |