Atnaujinkite slapukų nuostatas

El. knyga: Geometric Approaches to Quantum Field Theory

  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 07-Oct-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030852696
  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 07-Oct-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030852696

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself.



The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin ½ and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe.



This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.
Introduction.- Field Space Covariance.- Frame Covariance in Quantum
Gravity.- Field Space Covariance for Fermionic Theories.- The Eisenhart
Lift.- Cosmic Inflation.- Geometric Initial Conditions for
Inflation.- Conclusions.- Appendices.
Kieran Finn studied physics at Oxford University where he specialised in quantum field theory and cosmology, graduating with a first class MPhys degree in 2013. His final thesis, entitled Using Bayesian Methods to Search for Exoplanets with Planet Hunters, was awarded the Johnson Memorial prize for best thesis in the field of astrophysics.

Kieran went on to complete the Perimeter Scholars International program at the Perimeter Institute for Theoretical Physics. During this time, he helped develop the CPT symmetric model of cosmology together with Latham Boyle and Neil Turok. This is a novel theory for the beginning of the Universe in which the Big Bang is considered to be a mirror point between two symmetric universes. This model was published in Physical Review Letters as part of the featured in physics series and later appeared in several international news outlets including CNN, the BBC and New Scientist magazine.

In 2014 Kieran was awarded a Fulbright scholarshipto continue his studies at New York University. Here he completed research in a diverse range of topics including supernova observations, cosmic rays, and black hole evaporation. However, quantum field theory and cosmology remained his main interests and so, in 2017, Kieran returned to the UK to complete his PhD at the University of Manchester.

Under the watchful eye of his supervisor Apostolos Pilaftsis, Kieran published six papers on the use of geometry in quantum field theory and cosmology. The resulting thesis, which was successfully defended in October 2020, is Geometric Approaches to Quantum Field Theory.