Atnaujinkite slapukų nuostatas

El. knyga: Geometric Discrepancy: An Illustrated Guide

Edited by
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 18
  • Išleidimo metai: 02-Dec-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642039423
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 18
  • Išleidimo metai: 02-Dec-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642039423

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Discrepancy theory is also called the theory of irregularities of distribution. Here are some typical questions: What is the "most uniform" way of dis­ tributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? For a precise formulation of these questions, we must quantify the irregularity of a given distribution, and discrepancy is a numerical parameter of a point set serving this purpose. Such questions were first tackled in the thirties, with a motivation com­ ing from number theory. A more or less satisfactory solution of the basic discrepancy problem in the plane was completed in the late sixties, and the analogous higher-dimensional problem is far from solved even today. In the meantime, discrepancy theory blossomed into a field of remarkable breadth and diversity. There are subfields closely connected to the original number­ theoretic roots of discrepancy theory, areas related to Ramsey theory and to hypergraphs, and also results supporting eminently practical methods and algorithms for numerical integration and similar tasks. The applications in­ clude financial calculations, computer graphics, and computational physics, just to name a few. This book is an introductory textbook on discrepancy theory. It should be accessible to early graduate students of mathematics or theoretical computer science. At the same time, about half of the book consists of material that up until now was only available in original research papers or in various surveys.

Recenzijos

From the reviews:

The book gives a very useful introduction to geometric discrepancy theory. The style is quite informal and lively which makes the book easily readable.­­­ (Robert F. Tichy, Zentralblatt MATH, Vol. 1197, 2010)

Daugiau informacijos

Springer Book Archives
Preface to the Second Printing v
Preface vii
Notation xiii
1. Introduction 1
1.1 Discrepancy for Rectangles and Uniform Distribution
1
1.2 Geometric Discrepancy in a More General Setting
9
1.3 Combinatorial Discrepancy
16
1.4 On Applications and Connections
22
2. Low-Discrepancy Sets for Axis-Parallel Boxes 37
2.1 Sets with Good Worst-Case Discrepancy
38
2.2 Sets with Good Average Discrepancy
44
2.3 More Constructions: b-ary Nets
51
2.4 Scrambled Nets and Their Average Discrepancy
61
2.5 More Constructions: Lattice Sets
72
3. Upper Bounds in the Lebesgue-Measure Setting 83
3.1 Circular Discs: a Probabilistic Construction
84
3.2 A Surprise for the Li-Discrepancy for Halfplanes
93
4. Combinatorial Discrepancy 101
4.1 Basic Upper Bounds for General Set Systems
101
4.2 Matrices, Lower Bounds, and Eigenvalues
105
4.3 Linear Discrepancy and More Lower Bounds
109
4.4 On Set Systems with Very Small Discrepancy
117
4.5 The Partial Coloring Method
120
4.6 The Entropy Method
128
5. VC-Dimension and Discrepancy 137
5.1 Discrepancy and Shatter Functions
137
5.2 Set Systems of Bounded VC-Dimension
145
5.3 Packing Lemma
155
5.4 Matchings with Low Crossing Number
159
5.5 Primal Shatter Function and Partial Colorings
164
6. Lower Bounds 171
6.1 Axis-Parallel Rectangles: L2-Discrepancy
172
6.2 Axis-Parallel Rectangles: the Tight Bound
176
6.3 A Reduction: Squares from Rectangles
180
6.4 Halfplanes: Combinatorial Discrepancy
182
6.5 Combinatorial Discrepancy for Halfplanes Revisited
193
6.6 Halfplanes: the Lebesgue-Measure Discrepancy
197
6.7 A Glimpse of Positive Definite Functions
203
7. More Lower Bounds and the Fourier Transform 213
7.1 Arbitrarily Rotated Squares
213
7.2 Axis-Parallel Cubes
230
7.3 An Excursion to Euclidean Ramsey Theory
234
A. Tables of Selected Discrepancy Bounds 241
B. News Scan 1999-2009 245
Bibliography 251
Index 273
Hints 283