Preface to the second edition |
|
v | |
Preface |
|
vii | |
|
1 An Algebro-Geometric Tool Box |
|
|
1 | (104) |
|
|
1 | (4) |
|
1.1.1 Sheaves and Presheaves |
|
|
1 | (2) |
|
|
3 | (1) |
|
1.1.3 Sheaf Kernel and Cokernel |
|
|
4 | (1) |
|
|
5 | (8) |
|
1.2.1 Local Ringed Spaces |
|
|
5 | (3) |
|
1.2.2 Schemes as Local Ringed Spaces |
|
|
8 | (1) |
|
1.2.3 Sheaves over Schemes |
|
|
9 | (2) |
|
1.2.4 Topological Properties of Schemes |
|
|
11 | (2) |
|
|
13 | (7) |
|
|
13 | (1) |
|
|
13 | (3) |
|
1.3.3 Sheaves on Projective Schemes |
|
|
16 | (4) |
|
1.4 Categories and Functors |
|
|
20 | (8) |
|
|
20 | (2) |
|
|
22 | (1) |
|
1.4.3 Schemes as Functors |
|
|
23 | (3) |
|
|
26 | (2) |
|
1.5 Applications of the Key-Lemma |
|
|
28 | (10) |
|
1.5.1 Sheaf of Differential Forms on Schemes |
|
|
29 | (3) |
|
|
32 | (1) |
|
1.5.3 Inverse Image of Sheaves |
|
|
33 | (2) |
|
|
35 | (2) |
|
1.5.5 Morphisms into a Projective Space |
|
|
37 | (1) |
|
|
38 | (7) |
|
1.6.1 Group Schemes as Functors |
|
|
38 | (1) |
|
1.6.2 Kernel and Cokernel |
|
|
39 | (1) |
|
|
40 | (2) |
|
1.6.4 Locally Free Groups |
|
|
42 | (2) |
|
1.6.5 Schematic Representations |
|
|
44 | (1) |
|
|
45 | (5) |
|
1.7.1 Duality of Bialgebras |
|
|
45 | (2) |
|
1.7.2 Duality of Locally Free Groups |
|
|
47 | (3) |
|
1.8 Quotients by a Group Scheme |
|
|
50 | (12) |
|
|
50 | (2) |
|
1.8.2 Categorical Quotients |
|
|
52 | (2) |
|
1.8.3 Geometric Quotients |
|
|
54 | (8) |
|
|
62 | (11) |
|
1.9.1 Topological Definitions |
|
|
62 | (5) |
|
1.9.2 Diffeo-Geometric Definitions |
|
|
67 | (2) |
|
|
69 | (4) |
|
1.10 Cohomology of Coherent Sheaves |
|
|
73 | (9) |
|
1.10.1 Coherent Cohomology |
|
|
73 | (4) |
|
1.10.2 Summary of Known Facts |
|
|
77 | (1) |
|
1.10.3 Cohomological Dimension |
|
|
78 | (4) |
|
|
82 | (6) |
|
|
82 | (1) |
|
|
83 | (2) |
|
1.11.3 Descent of Schemes |
|
|
85 | (3) |
|
1.12 Barsotti-Tate Groups |
|
|
88 | (7) |
|
1.12.1 p-Divisible Abelian Sheaf |
|
|
88 | (4) |
|
1.12.2 Connected-Etale Exact Sequence |
|
|
92 | (1) |
|
1.12.3 Ordinary Barsotti-Tate Group |
|
|
93 | (2) |
|
|
95 | (10) |
|
1.13.1 Open Subschemes as Functors |
|
|
96 | (1) |
|
1.13.2 Examples of Formal Schemes |
|
|
97 | (4) |
|
1.13.3 Deformation Functors |
|
|
101 | (1) |
|
1.13.4 Connected Formal Groups |
|
|
102 | (3) |
|
|
105 | (118) |
|
|
105 | (17) |
|
|
105 | (3) |
|
2.1.2 Serre-Grothendieck Duality |
|
|
108 | (6) |
|
2.1.3 Riemann-Roch Theorem |
|
|
114 | (5) |
|
2.1.4 Relative Riemann-Roch Theorem |
|
|
119 | (3) |
|
|
122 | (12) |
|
|
122 | (1) |
|
|
123 | (2) |
|
2.2.3 Holomorphic Differentials |
|
|
125 | (1) |
|
2.2.4 Taylor Expansion of Differentials |
|
|
126 | (1) |
|
2.2.5 Weierstrass Equations of Elliptic Curves |
|
|
127 | (3) |
|
2.2.6 Moduli of Weierstrass Type |
|
|
130 | (4) |
|
2.3 Geometric Modular Forms of Level 1 |
|
|
134 | (5) |
|
2.3.1 Functorial Definition |
|
|
134 | (2) |
|
2.3.2 Coarse Moduli Scheme |
|
|
136 | (2) |
|
|
138 | (1) |
|
2.4 Elliptic Curves over C |
|
|
139 | (6) |
|
2.4.1 Topological Fundamental Groups |
|
|
140 | (2) |
|
2.4.2 Classical Weierstrass Theory |
|
|
142 | (1) |
|
2.4.3 Complex Modular Forms |
|
|
143 | (2) |
|
2.5 Elliptic Curves over p-Adic Fields |
|
|
145 | (10) |
|
2.5.1 Power Series Identities |
|
|
145 | (3) |
|
2.5.2 Universal Tate Curves |
|
|
148 | (5) |
|
2.5.3 Etale Covering of Tate Curves |
|
|
153 | (2) |
|
|
155 | (18) |
|
|
155 | (2) |
|
2.6.2 Level N Moduli Problems |
|
|
157 | (6) |
|
2.6.3 Generality of Elliptic Curves |
|
|
163 | (2) |
|
2.6.4 Proof of Theorem 2.6.8 |
|
|
165 | (3) |
|
2.6.5 Geometric Modular Forms of Level N |
|
|
168 | (5) |
|
2.7 L-Functions of Elliptic Curves |
|
|
173 | (7) |
|
2.7.1 L-Functions over Finite Fields |
|
|
173 | (3) |
|
2.7.2 Hasse-Weil L-Function |
|
|
176 | (4) |
|
|
180 | (9) |
|
|
180 | (3) |
|
2.8.2 Regular Moduli Varieties |
|
|
183 | (6) |
|
2.9 p-Ordinary Moduli Problems |
|
|
189 | (20) |
|
2.9.1 The Hasse Invariant |
|
|
189 | (4) |
|
2.9.2 Ordinary Moduli of p-Power Level |
|
|
193 | (2) |
|
2.9.3 Irreducibility of p-Ordinary Moduli |
|
|
195 | (1) |
|
2.9.4 Moduli Problem of Γ0 and Γ1 Type |
|
|
196 | (2) |
|
2.9.5 Moduli Problem of Γ0(p) and Γ1(p) Type |
|
|
198 | (11) |
|
2.10 Deformation of Elliptic Curves |
|
|
209 | (14) |
|
2.10.1 A Theorem of Drinfeld |
|
|
209 | (2) |
|
2.10.2 A Theorem of Serre-Tate |
|
|
211 | (3) |
|
2.10.3 Deformation of an Ordinary Elliptic Curve |
|
|
214 | (9) |
|
3 Geometric Modular Forms |
|
|
223 | (64) |
|
|
223 | (15) |
|
3.1.1 Spaces of Modular Forms |
|
|
223 | (13) |
|
3.1.2 Horizontal Control Theorem |
|
|
236 | (2) |
|
3.2 Vertical Control Theorem |
|
|
238 | (38) |
|
3.2.1 False Modular Forms |
|
|
240 | (12) |
|
3.2.2 p-Adic Modular Forms |
|
|
252 | (5) |
|
|
257 | (9) |
|
3.2.4 Families of p-Adic Modular Forms |
|
|
266 | (5) |
|
3.2.5 Horizontal Control of p-Power Level |
|
|
271 | (2) |
|
3.2.6 Control of Hecke algebra |
|
|
273 | (2) |
|
3.2.7 Irreducible Components and Analytic Families |
|
|
275 | (1) |
|
3.3 Action of GL(2) on Modular Forms |
|
|
276 | (11) |
|
3.3.1 Action of GL2(Z/NZ) |
|
|
276 | (4) |
|
|
280 | (7) |
|
4 Jacobians and Galois Representations |
|
|
287 | (96) |
|
4.1 Jacobians of Stable Curves |
|
|
287 | (35) |
|
4.1.1 Non-Singular Curves |
|
|
287 | (8) |
|
4.1.2 Union of Two Curves |
|
|
295 | (3) |
|
4.1.3 Functorial Properties of Jacobians |
|
|
298 | (4) |
|
4.1.4 Self-Duality of Jacobian Schemes |
|
|
302 | (2) |
|
4.1.5 Generality on Abelian Schemes |
|
|
304 | (9) |
|
4.1.6 Endomorphism of Abelian Schemes |
|
|
313 | (5) |
|
4.1.7 l-Adic Galois Representations |
|
|
318 | (4) |
|
4.2 Modular Galois Representations |
|
|
322 | (20) |
|
4.2.1 Hecke Correspondences |
|
|
323 | (3) |
|
4.2.2 Galois Representations on Modular Jacobians |
|
|
326 | (4) |
|
4.2.3 Ramification at the Level |
|
|
330 | (5) |
|
4.2.4 Ramification of p-Adic Representations at p |
|
|
335 | (2) |
|
4.2.5 Modular Galois Representations of Higher Weight |
|
|
337 | (5) |
|
4.3 Fullness of Big Galois Representations |
|
|
342 | (41) |
|
4.3.1 Big I-adic Galois Representations |
|
|
344 | (1) |
|
4.3.2 Ramification of I-adic Galois Representations |
|
|
345 | (1) |
|
4.3.3 Lie Algebras over p-Adic Ring |
|
|
346 | (2) |
|
4.3.4 Lie Algebras of p-Profinite Subgroups of SL(2) |
|
|
348 | (7) |
|
4.3.5 Lie Algebra and Lie Group over Zp |
|
|
355 | (4) |
|
4.3.6 Arithmetic Galois Characters |
|
|
359 | (2) |
|
4.3.7 Fullness of Modular Galois Representation |
|
|
361 | (4) |
|
4.3.8 Fullness of Elliptic Curves |
|
|
365 | (3) |
|
4.3.9 Fullness of Lie Algebra over Λ |
|
|
368 | (3) |
|
4.3.10 Fullness of I-Adic Galois Representation |
|
|
371 | (2) |
|
|
373 | (7) |
|
4.3.12 Proof of Theorem 4.3.4 |
|
|
380 | (3) |
|
|
383 | (54) |
|
5.1 Induced and Extended Galois Representations |
|
|
384 | (18) |
|
5.1.1 Induction and Extension |
|
|
385 | (7) |
|
5.1.2 Automorphic Induction |
|
|
392 | (3) |
|
5.1.3 Artin Representations |
|
|
395 | (7) |
|
|
402 | (14) |
|
|
402 | (2) |
|
5.2.2 Modularity of Extended Galois Representations |
|
|
404 | (2) |
|
|
406 | (7) |
|
5.2.4 Shimura-Taniyama Conjecture |
|
|
413 | (3) |
|
5.3 Modularity of Abelian Q-Varieties |
|
|
416 | (21) |
|
5.3.1 Abelian F-varieties of GL(2)-type |
|
|
417 | (7) |
|
5.3.2 Endomorphism Algebras of Abelian F-varieties |
|
|
424 | (1) |
|
5.3.3 Application to Abelian Q-Varieties |
|
|
425 | (7) |
|
5.3.4 Abelian Varieties with Real Multiplication |
|
|
432 | (5) |
Bibliography |
|
437 | (10) |
List of Symbols |
|
447 | (2) |
Statement Index |
|
449 | (2) |
Index |
|
451 | |