Atnaujinkite slapukų nuostatas

El. knyga: Geometric Modular Forms And Elliptic Curves

(Univ Of California, Los Angeles, Usa)
  • Formatas: 376 pages
  • Išleidimo metai: 27-Sep-2000
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814492898
Kitos knygos pagal šią temą:
  • Formatas: 376 pages
  • Išleidimo metai: 27-Sep-2000
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814492898
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura–Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction.In this new second edition, a detailed description of Barsotti–Tate groups (including formal Lie groups) is added to Chapter 1. As an application, a down-to-earth description of formal deformation theory of elliptic curves is incorporated at the end of Chapter 2 (in order to make the proof of regularity of the moduli of elliptic curve more conceptual), and in Chapter 4, though limited to ordinary cases, newly incorporated are Ribet's theorem of full image of modular p-adic Galois representation and its generalization to 'big' ?-adic Galois representations under mild assumptions (a new result of the author). Though some of the striking developments described above is out of the scope of this introductory book, the author gives a taste of present day research in the area of Number Theory at the very end of the book (giving a good account of modularity theory of abelian Q-varieties and Q-curves).
Preface v
An Algebro-Geometric Tool Box
1(88)
Sheaves
1(4)
Sheaves and Presheaves
1(1)
Sheafication
2(2)
Sheaf Kernel and Cokernel
4(1)
Schemes
5(8)
Local Ringed Spaces
5(3)
Schemes as Local Ringed Spaces
8(1)
Sheaves over Schemes
9(2)
Topological Properties of Schemes
11(2)
Projective Schemes
13(7)
Graded Rings
13(1)
Functor Proj
13(4)
Sheaves on Projective Schemes
17(3)
Categories and Functors
20(8)
Categories
21(1)
Functors
22(1)
Schemes as Functors
23(2)
Abelian Categories
25(3)
Applications of the Key-Lemma
28(9)
Sheaf of Differential Forms on Schemes
28(3)
Fiber Products
31(1)
Inverse Image of Sheaves
32(3)
Affine Schemes
35(1)
Morphisms into a Projective Space
36(1)
Group Schemes
37(8)
Group Schemes as Functors
37(2)
Kernel and Cokernel
39(1)
Bialgebras
40(2)
Locally Free Groups
42(2)
Schematic Representations
44(1)
Cartier Duality
45(5)
Duality of Bialgebras
45(2)
Duality of Locally Free Groups
47(3)
Quotients by a Group Scheme
50(12)
Naive Quotients
50(2)
Categorical Quotients
52(2)
Geometric Quotients
54(8)
Morphisms
62(10)
Topological Definitions
62(5)
Diffeo-Geometric Definitions
67(2)
Applications
69(3)
Cohomology of Coherent Sheaves
72(10)
Coherent Cohomology
73(4)
Summary of Known Facts
77(2)
Cohomological Dimension
79(3)
Descent
82(7)
Covering Data
82(2)
Descent Data
84(2)
An Application to Schemes
86(3)
Elliptic Curves
89(108)
Curves and Divisors
89(18)
Cartier Divisors
89(4)
Grothendieck-Serre Duality
93(5)
Riemann-Roch Theorem
98(5)
Relative Riemann-Roch Theorem
103(4)
Elliptic Curves
107(12)
Definition
107(1)
Abel's Theorem
108(2)
Holomorphic Differentials
110(1)
Taylor Expansion of Differentials
111(1)
Weierstrass Equations of Elliptic Curves
112(3)
Moduli of Weierstrass Type
115(4)
Geometric Modular Forms of Level 1
119(5)
Functorial Definition
119(1)
Coarse Moduli Scheme
120(3)
Fields of Moduli
123(1)
Elliptic Curves over C
124(6)
Topological Fundamental Groups
125(2)
Classical Weierstrass Theory
127(1)
Complex Modular Forms
128(2)
Elliptic Curves over p-Adic Fields
130(10)
Power Series Identities
130(3)
Universal Tate Curves
133(5)
Etale Covering of Tate Curves
138(2)
Level Structures
140(20)
Isogenies
140(3)
Level N Moduli Problems
143(6)
Generality of Elliptic Curves
149(2)
Proof of Theorem 2.6.8
151(3)
Geometric Modular Forms of Level N
154(6)
L-Functions of Elliptic Curves
160(6)
L-Functions over Finite Fields
160(2)
Hasse-Weil L-Function
162(4)
Regularity
166(9)
Regular Rings
167(3)
Regular Moduli Varieties
170(5)
p-Ordinary Moduli Problems
175(22)
The Hasse Invariant
176(3)
Ordinary Moduli of p-Power Level
179(3)
Irreducibility of p-Ordinary Moduli
182(1)
Moduli Problem of Γ0 and Γ1 Type
183(2)
Moduli Problem of Γ0(p) and Γ1(p) Type
185(12)
Geometric Modular Forms
197(60)
Integrality
197(15)
Spaces of Modular Forms
197(13)
Horizontal Control Theorem
210(2)
Vertical Control Theorem
212(34)
False Modular Forms
214(13)
p-Adic Modular Forms
227(5)
Hecke Operators
232(7)
Families of p-Adic Modular Forms
239(5)
Horizontal Control of p-Power Level
244(2)
Action of GL(2) on Modular Forms
246(11)
Action of GL2 (Z/NZ)
246(4)
Action of GL2(Z)
250(7)
Jacobians and Galois Representations
257(56)
Jacobians of Stable Curves
257(35)
Non-Singular Curves
257(8)
Union of Two Curves
265(3)
Functorial Properties of Jacobians
268(4)
Self-Duality of Jacobian Schemes
272(2)
Generality on Abelian Schemes
274(9)
Endomorphism of Abelian Schemes
283(5)
ℓ-Adic Galois Representations
288(4)
Modular Galois Representations
292(21)
Hecke Correspondences
293(3)
Galois Representations on Modular Jacobians
296(4)
Ramification at the Level
300(6)
Ramification of p-Adic Representations at p
306(2)
Modular Galois Representations of Higher Weight
308(5)
Modularity Problems
313(34)
Induced and Extended Galois Representations
314(17)
Induction and Extension
314(8)
Automorphic Induction
322(3)
Artin Representations
325(6)
Some Other Solutions
331(16)
A Theorem of Wiles
331(2)
Modularity of Extended Galois Representations
333(3)
Elliptic Q-Curves
336(7)
Shimura-Taniyama Conjecture
343(4)
Bibliography 347(8)
List of Symbols 355(2)
List of Statements 357(2)
Index 359