Atnaujinkite slapukų nuostatas

Geometries a Courbure Negative Ou Nulle, Groupes Discrets Et Rigidites

  • Formatas: 466 pages
  • Serija: Seminaires Et Congres
  • Išleidimo metai: 15-Apr-2010
  • Leidėjas: Amer Mathematical Society
  • ISBN-10: 2856292402
  • ISBN-13: 9782856292402
Kitos knygos pagal šią temą:
  • Formatas: 466 pages
  • Serija: Seminaires Et Congres
  • Išleidimo metai: 15-Apr-2010
  • Leidėjas: Amer Mathematical Society
  • ISBN-10: 2856292402
  • ISBN-13: 9782856292402
Kitos knygos pagal šią temą:
Ce volume rassemble, essentiellement, des notes de cours elaborees a l'occasion de l'ecole d'ete qui a eu lieu a l'Institut Fourier (Grenoble) durant l'ete 2004. Le nom de celle-ci: « Geometries a courbure negative ou nulle, groupes discrets et rigidites » a ete repris pour intituler le present livre. Bien souvent, ces notes de cours ont ete substantiellement remaniees apres coup.

This volume gathers essentially lecture notes taken at the Summer School which took place at the Institut Fourier (Grenoble) during the Summer of 2004. The title of the Summer School ("Negative or zerocurvature geometries, discrete groups and rigidities") has been used for the present volume. In many cases the lecture notes have been rewritten and enhanced.
Resumes des articles ix
Abstracts xiii
Introduction xvii
1 Rigidite d'actions de groupes sur des espaces metriques xvii
2 Approche algebrique et approche geometrique de la super-rigidite xviii
3 Quasi-isometries et invariants des actions de groupes xix
4 Applications harmoniques pour les espaces singuliers, cohomologie bornee xx
5 Cas de non rigidite: espaces de modules et compactifications xxi
6 Le present volume xxii
References xxiv
1 Quelques groupes et geometries
Symmetric spaces of the non-compact type: differential geometry
1(38)
Julien Maubon
1 Introduction
1(1)
2 Riemannian preliminaries
2(6)
3 Riemannian locally symmetric spaces
8(2)
4 Riemannian globally symmetric spaces
10(7)
5 Riemannian manifolds of non-positive curvature
17(11)
6 Symmetric spaces of non-compact type
28(10)
References
38(1)
Symmetric spaces of the non-compact type: Lie groups
39(38)
Paul-Emile Paradan
1 Introduction
39(1)
2 Lie groups and Lie algebras: an overview
39(18)
3 Semi-simple Lie groups
57(8)
4 Invariant connections
65(3)
5 Invariant connections on homogeneous spaces
68(8)
References
76(1)
Euclidean buildings
77(40)
Guy Rousseau
1 Groups generated by reflections and apartments
78(2)
2 Linear reflection groups
80(3)
3 General reflection groups
83(1)
4 Discrete reflection groups
84(2)
5 Facets for general reflection groups
86(2)
6 Definitions and general properties
88(6)
7 Metric properties of buildings
94(1)
8 Discrete Euclidean buildings
95(5)
9 Apartments and points at infinity
100(4)
10 Reductive groups
104(3)
11 Reductive groups over local fields
107(4)
12 The Bruhat-Tits building of GLn
111(3)
References
114(3)
Five lectures on lattices in semisimple Lie groups
117(60)
Yves Benoist
Introduction
117(2)
1 Lecture on Coxeter Groups
119(9)
2 Lecture on Arithmetic groups
128(13)
3 Lecture on Representations
141(12)
4 Lecture on Boundaries
153(13)
5 Lecture on Local Fields
166(8)
References
174(3)
2 Quelques rigidites en geometrie differentielle
Calabi-Weil infinitesimal rigidity
177(24)
Gerard Besson
Introduction
177(2)
1 Deformations and cohomology
179(1)
2 Cohomology of groups
180(1)
3 Local rigidity
181(2)
4 Differential geometry
183(3)
5 Hodge theory
186(3)
6 Applications I
189(3)
7 Applications II: Semi-simple groups
192(7)
8 Extensions of this technique
199(1)
References
199(2)
Quasi-conformal geometry and Mostow rigidity
201(12)
Marc Bourdon
1 Quasi-conformal geometry
201(5)
2 Quasi-isometries
206(1)
3 Mostow rigidity (proof)
207(1)
4 Sullivan-Tukia's theorem (proof)
208(3)
References
211(2)
Minimal Volume
213(30)
Laurent Bessieres
1 Introduction
213(3)
2 Zero or non-zero minimal volume
216(5)
3 Minimal volume and rigidity
221(2)
4 Structure of the proofs of the volume rigidity theorems
223(2)
5 BCG's natural maps
225(13)
6 Proof of the minimal volume rigidity theorem: the end
238(3)
References
241(2)
A useful formula from bounded cohomology
243(50)
Marc Burger
Alessandra Iozzi
1 Introduction
243(3)
2 Bounded Cohomology Preliminaries
246(20)
3 First Applications of "The Formula"
266(6)
4 Toward "The Formula" with Coefficients
272(9)
5 One More Application of "The Formula": Deformation Rigidity of Lattices of Hyperbolic Isometries
281(4)
A Proof of Proposition 4.1
285(3)
References
288(5)
3 Espaces metriques singuliers
Critical exponents and rigidity in negative curvature
293(28)
Gilles Courtois
1 Introduction
293(5)
2 Alternative proof of the theorem 1.5 in a simpler case
298(5)
3 A theorem of P. Tukia
303(1)
4 Weak tangent and self similarity of limit sets
304(5)
5 Topological dimension and regular maps
309(5)
6 Topological dimension and Hausdorff dimension
314(3)
7 Proof of the theorem 1.5
317(1)
References
318(3)
Quasi-isometry rigidity of groups
321(52)
Cornelia Drutu
1 Preliminaries on quasi-isometries
322(4)
2 Rigidity of non-uniform rank-one lattices
326(10)
3 Classes of groups complete with respect to quasi-isometries
336(5)
4 Asymptotic cones of a metric space
341(6)
5 Relatively hyperbolic groups: image from infinitely far away and rigidity
347(10)
6 Groups asymptotically with(out) cut-points
357(5)
7 Open questions
362(1)
8 Dictionary
363(4)
References
367(6)
Superrigidite geometrique et applications harmoniques
373(48)
Pierre Pansu
1 Introduction
373(4)
2 Superrigidite et finitude des representations
377(5)
3 Applications harmoniques equivariantes
382(2)
4 Applications harmoniques combinatoires
384(7)
5 Formule de Garland
391(7)
6 Calculs de bas de spectre
398(16)
7 Modeles de groupes aleatoires a densite
414(2)
References
416(5)
4 Deformations, espaces de modules et compactifications
Sur la compactification de Thurston de l'espace de Teichmuller
421(24)
Frederic Paulin
References
440(5)
Moduli of cubic surfaces and Hodge theory (after All-cock, Carlson, Toledo)
445
Arnaud Beauville
Introduction
445(1)
1 Motivation: the case of quartic surfaces
446(2)
2 Statement of the main result
448(3)
3 The differential of the period map
451(2)
4 Injectivity of the period map
453(3)
5 The image of
456(2)
6 Stable and semi-stable cubic surfaces
458(3)
7 Extension of the period map
461(2)
8 Complements
463(2)
References
465