Introduction |
|
1 | (4) |
|
|
1 | (1) |
|
Conventions Used in This Book |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (2) |
|
Chapter 1 An Overview of Geometry |
|
|
5 | (16) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
Am I Ever Going to Use This? |
|
|
7 | (2) |
|
When you'll use your knowledge of shapes |
|
|
7 | (1) |
|
When you'll use your knowledge of proofs |
|
|
8 | (1) |
|
Getting Down with Definitions |
|
|
9 | (2) |
|
|
11 | (1) |
|
Lines, Segments, and Rays |
|
|
12 | (2) |
|
Horizontal and vertical lines |
|
|
12 | (1) |
|
Doubling up with pairs of lines |
|
|
13 | (1) |
|
Investigating the Plane Facts |
|
|
14 | (1) |
|
|
14 | (4) |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (3) |
|
|
18 | (1) |
|
|
18 | (3) |
|
Chapter 2 Geometry Proof Starter Kit |
|
|
21 | (20) |
|
The Lay of the (Proof) Land |
|
|
21 | (2) |
|
Reasoning with If-Then Logic |
|
|
23 | (4) |
|
|
24 | (1) |
|
Definitions, theorems, and postulates |
|
|
25 | (1) |
|
|
26 | (1) |
|
Complementary and Supplementary Angles |
|
|
27 | (2) |
|
|
29 | (5) |
|
|
29 | (4) |
|
|
33 | (1) |
|
Like Multiples and Like Divisions |
|
|
34 | (2) |
|
Congruent Vertical Angles |
|
|
36 | (1) |
|
Transitivity and Substitution |
|
|
37 | (4) |
|
Chapter 3 Tackling a Longer Proof |
|
|
41 | (10) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (2) |
|
Chipping Away at the Problem |
|
|
45 | (2) |
|
|
47 | (2) |
|
|
49 | (1) |
|
Writing out the Finished Proof |
|
|
49 | (2) |
|
Chapter 4 Triangle Fundamentals |
|
|
51 | (18) |
|
Taking in a Triangle's Sides |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
Triangle Classification by Angles |
|
|
52 | (1) |
|
The Triangle Inequality Principle |
|
|
53 | (1) |
|
|
54 | (3) |
|
A triangle's altitude or height |
|
|
54 | (2) |
|
Determining a triangle's area |
|
|
56 | (1) |
|
Regarding Right Triangles |
|
|
57 | (1) |
|
|
58 | (2) |
|
Pythagorean Triple Triangles |
|
|
60 | (4) |
|
|
61 | (1) |
|
Families of Pythagorean triple triangles |
|
|
61 | (3) |
|
Two Special Right Triangles |
|
|
64 | (5) |
|
The 45°- 45°- 90° triangle |
|
|
64 | (2) |
|
The 30°- 60°- 90° triangle |
|
|
66 | (3) |
|
Chapter 5 Congruent Triangle Proofs |
|
|
69 | (16) |
|
Proving Triangles Congruent |
|
|
69 | (6) |
|
SSS: The side-side-side method |
|
|
70 | (2) |
|
|
72 | (2) |
|
ASA: The angle-side-angle tack |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
Taking the Next Step with CPCTC |
|
|
75 | (4) |
|
|
76 | (1) |
|
|
76 | (3) |
|
The Isosceles Triangle Theorems |
|
|
79 | (2) |
|
The Two Equidistance Theorems |
|
|
81 | (4) |
|
Determining a perpendicular bisector |
|
|
81 | (2) |
|
Using a perpendicular bisector |
|
|
83 | (2) |
|
|
85 | (22) |
|
|
85 | (4) |
|
Parallel lines with a transversal |
|
|
85 | (2) |
|
|
87 | (2) |
|
The Seven Special Quadrilaterals |
|
|
89 | (1) |
|
Working with Auxiliary Lines |
|
|
90 | (3) |
|
The Properties of Quadrilaterals |
|
|
93 | (7) |
|
Properties of the parallelogram |
|
|
93 | (2) |
|
Properties of the three special parallelograms |
|
|
95 | (3) |
|
|
98 | (1) |
|
Properties of the trapezoid and the isosceles trapezoid |
|
|
99 | (1) |
|
Proving That You've Got a Particular Quadrilateral |
|
|
100 | (7) |
|
Proving you've got a parallelogram |
|
|
100 | (3) |
|
Proving that you've got a rectangle, rhombus, or square |
|
|
103 | (1) |
|
Proving that you've got a kite |
|
|
104 | (3) |
|
Chapter 7 Polygon Formulas |
|
|
107 | (12) |
|
The Area of Quadrilaterals |
|
|
107 | (6) |
|
Quadrilateral area formulas |
|
|
108 | (1) |
|
|
108 | (2) |
|
Trying a few area problems |
|
|
110 | (3) |
|
The Area of Regular Polygons |
|
|
113 | (2) |
|
The polygon area formulas |
|
|
114 | (1) |
|
|
114 | (1) |
|
Angle and Diagonal Formulas |
|
|
115 | (4) |
|
Interior and exterior angles |
|
|
116 | (1) |
|
|
117 | (1) |
|
Criss-crossing with diagonals |
|
|
118 | (1) |
|
|
119 | (16) |
|
|
119 | (5) |
|
Defining similar polygons |
|
|
119 | (2) |
|
How similar figures line up |
|
|
121 | (1) |
|
Solving a similarity problem |
|
|
122 | (2) |
|
Proving Triangles Similar |
|
|
124 | (4) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
Splitting Right Triangles with the Altitude-on-Hypotenuse Theorem |
|
|
128 | (2) |
|
More Proportionality Theorems |
|
|
130 | (5) |
|
The Side-Splitter Theorem |
|
|
130 | (2) |
|
The Angle-Bisector Theorem |
|
|
132 | (3) |
|
|
135 | (16) |
|
Radii, Chords, and Diameters |
|
|
135 | (3) |
|
|
136 | (1) |
|
|
136 | (2) |
|
|
138 | (1) |
|
|
138 | (2) |
|
|
140 | (3) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (4) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
Keeping the formulas straight |
|
|
146 | (1) |
|
|
147 | (4) |
|
|
148 | (1) |
|
The Tangent-Secant Theorem |
|
|
149 | (1) |
|
The Secant-Secant Theorem |
|
|
149 | (1) |
|
Condensing the power theorems into a single idea |
|
|
150 | (1) |
|
|
151 | (10) |
|
|
151 | (3) |
|
|
154 | (5) |
|
|
159 | (2) |
|
Chapter 11 Coordinate Geometry |
|
|
161 | (10) |
|
|
161 | (1) |
|
Slope, Distance, and Midpoint |
|
|
162 | (5) |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
Equations for Lines and Circles |
|
|
167 | (4) |
|
|
168 | (1) |
|
|
168 | (3) |
|
Chapter 12 Ten Big Reasons to Use in Proofs |
|
|
171 | (4) |
|
|
171 | (1) |
|
Vertical Angles Are Congruent |
|
|
171 | (1) |
|
The Parallel-Line Theorems |
|
|
172 | (1) |
|
Two Points Determine a Line |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
Index |
|
175 | |