Atnaujinkite slapukų nuostatas

El. knyga: Geometry by Its Transformations: Lessons Centered on the History from 1800-1855

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook combines the history of synthetic geometry, centered on the years 1800-1855, with a theorem-proof exposition of the geometry developed in those years. The book starts with the background needed from Euclids Elements, followed by chapters on transformations, including dilation (similitude), homology, homogeneous coordinates, projective geometry, inversion, the Möbius transformation, and transformation geometry as in French schoolbooks of 1910. Projective geometry is presented by tracing its path through the work of J. V. Poncelet, J. Steiner, and K. G. C. von Staudt. Extensive exercises are included, many from the period studied. The prerequisites for approaching this course are knowledge of high school geometry and enthusiasm for mathematical demonstration.





This textbook is ideal for a college geometry course, for self-study, or as preparation for the study of modern geometry. 
Introduction.-
1. Greek Background.- 2. The Dilation Transformation.-
3. Institutional Transformation of Geometry: France.- 4. Affinity and the
List of Transformations by Moebius.- 5. Background for Homology: the Common
Secant, the Cross-Ratio, and Harmonic Sets.- 6. Plane-to-Plane Projection.-
7. Homology as developed by La Hire and Poncelet.- 8. Matrices and
Homogeneous Coordinates.- 9. Projective Geometry: Steiner and von Staudt.-
10. Transformation in German Universities.- 11. Geometric Inversion.-
12. Moebius Transformation.- 13. Topic after 1855: Beltrami-Klein Model.-
14. Topic after 1855: Isometries and Dilations in French Schoolbooks.
Christopher Baltus has degrees in history (BA), mathematics education (MAT), and mathematics (PhD). After three years of secondary mathematics teaching and two years in the Peace Corps, he taught college mathematics for 36 years. His article Poncelets discovery of homology appeared in Historia Mathematica, May 2023. In retirement, in Poughkeepsie, NY, he and his wife volunteer in an elementary school, he as an in-the-classroom mathematics aide.