Atnaujinkite slapukų nuostatas

El. knyga: Geometry Of Quantum Potential, The: Entropic Information Of The Vacuum

(Spacelife Inst, Italy)
  • Formatas: 344 pages
  • Išleidimo metai: 06-Mar-2018
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813227996
  • Formatas: 344 pages
  • Išleidimo metai: 06-Mar-2018
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813227996

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In virtue of its features, Bohm's quantum potential introduces interesting and relevant perspectives towards a satisfactory geometrodynamic description of quantum processes. This book makes a comprehensive state-of-the-art review of some of the most significant elements and results about the geometrodynamic picture determined by the quantum potential in various contexts. Above all, the book explores the perspectives about the fundamental arena subtended by the quantum potential, the link between the geometry associated to the quantum potential and a fundamental quantum vacuum. After an analysis of the geometry subtended by the quantum potential in the different fields of quantum physics (the non-relativistic domain, the relativistic domain, the relativistic quantum field theory, the quantum gravity domain and the canonical quantum cosmology), in the second part of the book, a recent interpretation of Bohm's quantum potential in terms of a more fundamental entity called quantum entropy, the approach of the symmetryzed quantum potential and the link between quantum potential and quantum vacuum are analysed, also in the light of the results obtained by the author.
Introduction ix
Chapter 1 The Geometry of the Quantum Potential in Different Contexts
1(136)
1.1 Bohm's Original 1952 Approach on the Quantum Potential
1(11)
1.2 The Geometrodynamic Information of the Quantum Potential
12(24)
1.2.1 Grossing's thermodynamic approach to the quantum potential
16(13)
1.2.2 Quantum potential as an information channel of a special superfluid vacuum
29(7)
1.3 About the Link Between Weyl Geometries and the Quantum Potential
36(13)
1.3.1 Weyl's conformal geometrodynamics
37(4)
1.3.2 Santamato's geometric interpretation of quantum mechanics
41(5)
1.3.3 Novello's, Salim's and Falciano's approach of quantum mechanics as a manifestation of the non-euclidean geometry
46(3)
1.4 The Quantum Potential in the Relativistic Domain
49(25)
1.4.1 The quantum potential in Bohm's approach to Klein-Gordon relativistic quantum mechanics
50(11)
1.4.2 About a Bohmian approach to the Dirac relativistic quantum mechanics
61(13)
1.5 The Quantum Potential in Relativistic Quantum Field Theory
74(17)
1.5.1 The quantum potential in bosonic quantum field theory
76(9)
1.5.2 The quantum potential in fermionic quantum field theory
85(6)
1.6 The Quantum Potential in Bohmian Quantum Gravity
91(19)
1.6.1 Bohm's quantum potential in relativistic curved space-time
92(5)
1.6.2 Bohm's quantum potential in quantum gravity
97(13)
1.7 The Quantum Potential in Bohmian Quantum Cosmology
110(17)
1.7.1 F. Shojai's and A. Shojai's geometrodynamic approach to Wheeler-de Witt equation
112(6)
1.7.2 Pinto-Neto's results about bohmian quantum cosmology
118(6)
1.7.3 The quantum potential and the cosmological constant
124(3)
1.8 About the Quantum Potential in the Treatment of Entangled Qubits
127(10)
Chapter 2 Quantum Entropy and Quantum Potential
137(66)
2.1 The Quantum Entropy as the Ultimate Source of the Geometry of Space in the Non-Relativistic Domain
138(19)
2.2 The Quantum Entropy in Bohm's Approach to the Klein-Gordon Relativistic Quantum Mechanics
157(7)
2.3 About the Quantum Entropy in a Bohmian Approach to the Dirac Relativistic Quantum Mechanics
164(8)
2.4 Perspectives of the Quantum Entropy in Bohm's Relativistic Quantum Field Theory
172(6)
2.5 The Quantum Entropy as the Ultimate Source of the Geometry of Space in the Relativistic de Broglie-Bohm Theory in Curved Space-Time
178(4)
2.6 The Quantum Entropy as the Ultimate Source of the Geometry of Space in Bohmian Quantum Gravity
182(3)
2.7 The Quantum Entropy as the Ultimate Source of the Geometry of Space in Bohmian Quantum Cosmology
185(4)
2.8 About the Geometrodynamics of Bohm's Quantum Potential in an Entropic Approach in the Condition of Fisher Information
189(14)
Chapter 3 Immediate Quantum Information and Symmetryzed Quantum Potential
203(48)
3.1 The Symmetrized Quantum Potential in the Non-relativistic Domain
204(18)
3.2 The Quantum Geometry in the Symmetrized Quantum Potential Approach
222(6)
3.3 The Symmetrized Quantum Potential Approach in the Relativistic de Broglie-Bohm Theory in Curved Space-time
228(7)
3.4 Towards a Symmetrized Extension of Bohm's Relativistic Quantum Field Theory
235(8)
3.5 The Symmetrized Quantum Potential for Gravity in the Context of Wheeler-deWitt Equation
243(8)
Chapter 4 The Quantum Potential and the Quantum Vacuum
251(42)
4.1 The Space-time Arena and the Quantum Vacuum
251(3)
4.2 Bohm's Quantum Potential Approach as the Epistemological Foundation of the Quantum Vacuum
254(2)
4.3 From Bohm's View to Kastner's Possibilist Transactional Interpretation and Chiatti's and Licata's Approach about Transactions
256(6)
4.4 From Transactions to a Three-dimensional Timeless Non-local Quantum Vacuum to the Emergence of the Geometrodynamics of Standard Quantum Theory from the Non-local Quantum Vacuum
262(18)
4.5 About the Behaviour of Subatomic Particles in the Three-dimensional Timeless Non-local Quantum Vacuum
280(2)
4.6 Unifying Perspectives of the Non-local Quantum Potential of the Vacuum
282(11)
Conclusions 293(8)
References 301(20)
Index 321