Atnaujinkite slapukų nuostatas

Geometry of Spacetime: An Introduction to Special and General Relativity Softcover reprint of the original 1st ed. 2000 [Minkštas viršelis]

4.21/5 (19 ratings by Goodreads)
  • Formatas: Paperback / softback, 454 pages, aukštis x plotis: 244x170 mm, weight: 931 g, XIV, 454 p., 1 Paperback / softback
  • Serija: Undergraduate Texts in Mathematics
  • Išleidimo metai: 12-Dec-2011
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1441931422
  • ISBN-13: 9781441931429
  • Formatas: Paperback / softback, 454 pages, aukštis x plotis: 244x170 mm, weight: 931 g, XIV, 454 p., 1 Paperback / softback
  • Serija: Undergraduate Texts in Mathematics
  • Išleidimo metai: 12-Dec-2011
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1441931422
  • ISBN-13: 9781441931429
In 1905, Albert Einstein offered a revolutionary theory - special relativity - to explain some of the most troubling problems in current physics concerning electromagnetism and motion. Soon afterwards, Hermann Minkowski recast special relativity essentially as a new geometric structure for spacetime. These ideas are the subject of the first part of the book. The second part develops the main implications of Einstein's general relativity as a theory of gravity rooted in the differential geometry of surfaces. The author explores the way an individual observer views the world and how a pair of observers collaborates to gain objective knowledge of the world. He has tried to encompass both the general and special theory by using the geometry of spacetime as the unifying theme of the book. To read it, one needs only a first course in linear algebra and multivariable calculus and familiarity with the physical applications of calculus.

Daugiau informacijos

Springer Book Archives
Preface vii
1 Relativity Before 1905
1(30)
1.1 Spacetime
1(8)
1.2 Galilean Transformations
9(6)
1.3 The Michelson-Morley Experiment
15(7)
1.4 Maxwell's Equations
22(9)
2 Special Relativity---Kinematics
31(56)
2.1 Einstein's Solution
31(12)
2.2 Hyperbolic Functions
43(6)
2.3 Minkowski Geometry
49(24)
2.4 Physical Consequences
73(14)
3 Special Relativity---Kinetics
87(56)
3.1 Newton's Laws of Motion
87(21)
3.2 Curves and Curvature
108(15)
3.3 Accelerated Motion
123(20)
4 Arbitrary Frames
143(60)
4.1 Uniform Rotation
144(11)
4.2 Linear Acceleration
155(12)
4.3 Newtonian Gravity
167(21)
4.4 Gravity in Special Relativity
188(15)
5 Surfaces and Curvature
203(54)
5.1 The Metric
203(18)
5.2 Intrinsic Geometry on the Sphere
221(9)
5.3 De Sitter Spacetime
230(11)
5.4 Curvature of a Surface
241(16)
6 Intrinsic Geometry
257(72)
6.1 Theorema Egregium
257(11)
6.2 Geodesics
268(9)
6.3 Curved Spacetime
277(15)
6.4 Mappings
292(15)
6.5 Tensors
307(22)
7 General Relativity
329(56)
7.1 The Equations of Motion
330(14)
7.2 The Vacuum Field Equations
344(22)
7.3 The Matter Field Equations
366(19)
8 Consequences
385(50)
8.1 The Newtonian Approximation
386(10)
8.2 Spherically Symmetric Fields
396(17)
8.3 The Bending of Light
413(8)
8.4 Perihelion Drift
421(14)
Bibliography 435(4)
Index 439