Atnaujinkite slapukų nuostatas

Germanium Silicon: Physics and Materials, Volume 56 [Kietas viršelis]

Volume editor (University of Virginia, Charlottesville), Series edited by (Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany), Volume editor (University of Virginia, Charlottesville), Series edited by (WILLARDSON CONSULTING SPOKANE, WASHINGTON)
  • Formatas: Hardback, 444 pages, aukštis x plotis: 229x152 mm, weight: 890 g
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 09-Nov-1998
  • Leidėjas: Academic Press Inc
  • ISBN-10: 012752164X
  • ISBN-13: 9780127521640
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 444 pages, aukštis x plotis: 229x152 mm, weight: 890 g
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 09-Nov-1998
  • Leidėjas: Academic Press Inc
  • ISBN-10: 012752164X
  • ISBN-13: 9780127521640
Kitos knygos pagal šią temą:
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
List of Contributors xi Growth Techniques and Procedures John C. Bean Introduction 1(2) Generic Issues 3(3) Common Growth Techniques 6(18) Molecular Beam Epitaxy 6(7) Rapid Thermal Chemical Vapor Deposition 13(3) Ultra--high Vacuum Chemical Vapor Deposition 16(6) Atmospheric Pressure Chemical Vapor Deposition 22(2) Gas Source MBE 24(1) Comparison of Growth Results 24(6) Layer Thickness 25(3) Doping 28(1) Majority Carrier Transport 28(1) Photoluminescence 29(1) Minority Carrier Lifetime 29(1) Nonplanar Growth 30(15) Atomic Ordering 31(1) Islands and Wires 32(6) Selective Area Epitaxy 38(2) Strain-Relaxed GeSi and GeSi Pseudo-Substrates 40(5) Summary 45(4) References 45(4) Fundamental Mechanisms of Film Growth Donald E. Savage Feng Liu Volkmar Zielasek Max G. Lagally Introduction 49(7) Equilibrium Growth Modes 50(2) Kinetic Processes During Vapor Deposition 52(1) Kinetic Growth Modes 53(3) Silicon 56(23) Crystal Structure 57(5) Growth of Si on Si(001) (Atomistic Mechanisms) 62(13) Thermodynamic Properties and Equilibrium Surface Morphology 75(4) Heteroepitaxial Growth: Ge on Si 79(11) Growth of the Ge Wetting Layer on Si(001) 79(7) Nucleation of Coherent `Hut-Islands 86(4) SiGe Alloy Films 90(4) Roughening and Coherent 3-D Island Formation in Alloys 92(1) Multilayer Growth 93(1) Summary 94(8) References 96(6) Misfit Strain and Accommodation in SiGe Heterostructures R. Hull Origin of Strain in Heteropitaxy 102(1) Accommodation of Strain 103(6) Elastic Distortion of Atomic Bonds in the Epitaxial Layer 103(2) Roughening of the Epitaxial Layer 105(1) Interdiffusion across the Epilayer/Substrate Interface 105(2) Plastic Relaxation of Strain by Misfit Dislocations 107(1) Competition Between Different Strain Relief Mechanisms 108(1) Review of Basic Dislocation Theory 109(11) Definition and Geometry 109(2) Energy of Dislocations 111(1) Forces on Dislocations 112(1) Glide and Climb 112(1) Geometry of Interfacial Misfit Dislocation Arrays 113(3) Motion of Dislocations: Kinks 116(1) Dislocation Dissociation 117(2) Partial versus Total Misfit Dislocations 119(1) Excess Stress, Equilibrium Strain and Critical Thickness 120(11) Introduction 120(1) Matthews--Blakeslee Framework 120(4) Accuracy of the MB Model 124(1) Other Critical Thickness Models 124(2) Extension to Partial Misfit Dislocations 126(2) Models for Critical Thickness in Multilayer Structures 128(3) Metastability and Misfit Dislocation Kinetics 131(24) Basic Concepts 131(2) Misfit Dislocation Nucleation 133(11) Misfit Dislocation Propagation 144(5) Misfit Dislocation Interactions 149(3) Kinetic Modeling of Strain Relaxation by Misfit Dislocations 152(3) Misfit and Threading Dislocation Reduction Techniques 155(6) Introduction 155(1) Buffer Layers 156(1) Threading Dislocation Filtering 157(4) Conclusions 161(8) References 164(5) Fundamental Physics of Strained Layer GeSi: Quo Vadis? M. J. Shaw M. Jaros Introduction 169(5) Perfect Superlattice Systems 174(15) Basic Concepts of Superlative Bandstructures 174(8) GeSi Bandstructures from Empirical Pseudopotential Calculations 182(7) Electronic Structure of Imperfect and Finite Systems 189(6) Bandstructure of Ordered and Disordered Systems 189(4) Optical Transitions in a Finite Superlattice 193(2) Luminescence and Interface Localization 195(4) Experimental Optical Spectra of SiGe Systems 195(2) Impurities at Interface Islands 197(2) Microscopic Signature of GeSi Interfaces 199(13) First--Principles Calculations of Si/Ge Superlattices 200(3) Interface--Induced Localization at Donor Impurities 203(4) Defect Peturbations to Conduction States 207(4) Localization at Ge Impurities in Si Layers 211(1) Microscopic Electronic Structure Effects in Optical Spectra 212(7) Conclusion 219(7) References 221(5) Optical Properties Fernando Cerdeira Introduction 226(1) Forms of Differential Spectroscopy Based on Reflection or Absorption of Light 226(27) General Considerations 226(5) On Pseudo-direct Optical Transitions 231(5) Other Optical Transitions in Si/GexSi1--x and Microstructures 236(7) Other Optical Transitions in GenSim Quantum Wells and Superlattices 243(10) Raman Scattering 253(24) General Considerations 253(3) Raman Scattering in Bulk GexSi1--x Random Alloys 256(2) Raman Scattering by Optic Modes in GenSim QWs and SLs 258(2) Raman Scattering by Acoustical Phonons in Si/Ge Microstructures 260(5) Resonant Raman Scattering 265(11) Summary 276(1) Photoluminescence 277(11) Introduction 277(1) PL from Bulk GexSi1--x Alloys 278(2) PL from Si/GexSi1--x Microstructures 280(6) PL from Ultrathin GenSim QWs and SLs 286(2) Concluding Remarks 288(5) References 289(4) Electronic Properties and Deep Levels in Germanium-Silicon Steven A. Ringel Patrick N. Grillot Introduction 293(2) Deep Levels in GexSi1--x 295(24) DLTS Identification and Analysis of Extended Defect States in GexSi1--x 296(7) Electron Traps in GexSi1--x Alloys for x = 0 -- 1 303(6) Hole Traps in GexSi1--x from x = 0 -- 1 309(10) Influence of Defects on Electrical Properties of GexSi1--x Alloys 319(7) Doping Compensation in Relaxed GexSi1--x Layers 319(3) Carrier Generation-Recombination in Relaxed GexSi1--x Layers 322(4) Carrier Transport Properties of GexSi1--x 326(15) Carriber Mobilities in Strained and Unstrained Bulk GexSi--x 327(7) Two-Dimensional Carrier Transport in GeSi/Si Heterostructures 334(5) Minority Carrier Lifetimes and Diffusion Coefficients 339(2) Conclusions 341(6) References 343(4) Optoelectronics in Silicon and Germanium Silicon Joe C. Campbell Introduction 347(1) Photodetectors 348(15) Avalanche and p-i-n Photodiodes 348(4) Resonant-Cavity Photodiodes 352(4) Metal-Semiconductor-Metal Photodiodes 356(6) Integrated Optical Receivers 362(1) Light Emitters 363(8) Porous Silicon 363(4) Erbium-doped Si 367(2) Si1-x Gex Quantum Wells and (Si)m (Ge)n Strained Layer Superlattices 369(2) Guided-Wave Devices 371(9) Waveguides 371(4) Integrated and Active Components 375(5) Conclusions 380(7) References 380(7) Si1-y Cy and Si1-x-y Gex Cy Alloy Layers Karl Eberl Karl Brunner Oliver G. Schmidt Introduction 387(3) General Remarks on the Material Combination of Si, Ge and C 390(2) Preparation of Si1-yCy and Si1-x-y Gex-Cy Layers by Molecular Beam Epitaxy 392(2) Structural Properties 394(7) Thermal Stability 394(3) Local Strain of Substitutional C in Si 397(4) Optical Properties 401(12) Si1-y Cy Alloy Layers 401(3) SiGeC Alloy Layers 404(4) Si/Ge/Si1-y Cy Quantum Wells 408(2) Carbon-Induced Ge Quantum Dots 410(3) Electrical Transport Properties 413(5) Summary/Devices 418(5) References 419(4) Index 423(6) Contents of Volumes in this Series 429
Prof. Dr. Eicke R. Weber, Fraunhofer-Institut fur Solare Energiesysteme ISE, Freiburg, Germany