Atnaujinkite slapukų nuostatas

El. knyga: Glimpses of Algebra and Geometry

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Previous edition sold 2000 copies in 3 years; Explores the subtle connections between Number Theory, Classical Geometry and Modern Algebra; Over 180 illustrations, as well as text and Maple files, are available via the web facilitate understanding: http://mathsgi01.rutgers.edu/cgi-bin/wrap/gtoth/; Contains an insert with 4-color illustrations; Includes numerous examples and worked-out problems

Recenzijos

From the reviews of the second edition:









"Toths Glimpses offer selected material that connect algebra and geometry . This second edition is a revised and substantially expanded version, so for example it includes a detailed treatment of the solution of the cubic and quartic, as well as a long new chapter on Kleins famous work on the quintic and the icosahedron." (Günter M. Ziegler, Zentralblatt MATH, Vol. 1027, 2004)



"The book is intended and really manages it to fill undergraduates with enthusiasm to reach the graduate level. the author presents various topics of number theory, geometry and algebra and at the same time shows their connection resp. interplay, thus making the study lively and fascinating for the reader. information on advanced websites and films show how carefully the author has done his job. So this second edition hopefully will not be the last one." (G. Kowol, Monatshefte für Mathematik, Vol. 141 (2), 2004)



"The text covers a wide range of topics and gives a taste of advanced material in number theory, geometry and algebra, particularly where these fields overlap. there are plenty of references for the interested reader who wishes to pursue a particular topic in greater depth. the accessibility of the format and the flow of the material combine to create an entertaining and informative work. I recommend the text as a good read for mathematicians of all specialities. " (Stephen Lucas, The Australian Mathematical Society Gazette, Vol. 30 (4), 2003)



"This is the second, much revised and augmented edition of the book originally published in 1998. It intends to close the gap between undergraduate and graduate studies in number theory, classical geometry and modern algebra. Each of the chapters is a good read and the book adds up to a wholly appealing entity. It can be warmly recommended . I can well imagine that teachers as well as scientists willbenefit from this carefully worked-out textbook." (J. Lang, Internationale Mathematische Nachrichten, Vol. 57 (192), 2003)

Daugiau informacijos

Springer Book Archives
A Number Is a Multitude Composed of UnitsEuclid.- ... There Are No
Irrational Numbers at AllKronecker.- Rationality, Elliptic Curves, and
Fermats Last Theorem.- Algebraic or Transcendental?.- Complex Arithmetic.-
Quadratic, Cubic, and Quartic Equations.- Stereographic Projection.- Proof of
the Fundamental Theorem of Algebra.- Symmetries of Regular Polygons.-
Discrete Subgroups of Iso (R2).- Möbius Geometry.- Complex Linear Fractional
Transformations.- Out of Nothing I Have Created a New UniverseBolyai.-
Fuchsian Groups.- Riemann Surfaces.- General Surfaces.- The Five Platonic
Solids.- Finite Möbius Groups.- Detour in Topology: Euler-Poincaré
Characteristic.- Detour in Graph Theory: Euler, Hamilton, and the Four Color
Theorem.- Dimension Leap.- Quaternions.- Back to R3!.- Invariants.- The
Icosahedron and the Unsolvable Quintic.- The Fourth Dimension.