Atnaujinkite slapukų nuostatas

Global Homotopy Theory [Kietas viršelis]

(Rheinische Friedrich-Wilhelms-Universität Bonn)
  • Formatas: Hardback, 846 pages, aukštis x plotis x storis: 235x158x46 mm, weight: 1290 g, Worked examples or Exercises
  • Serija: New Mathematical Monographs
  • Išleidimo metai: 06-Sep-2018
  • Leidėjas: Cambridge University Press
  • ISBN-10: 110842581X
  • ISBN-13: 9781108425810
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 846 pages, aukštis x plotis x storis: 235x158x46 mm, weight: 1290 g, Worked examples or Exercises
  • Serija: New Mathematical Monographs
  • Išleidimo metai: 06-Sep-2018
  • Leidėjas: Cambridge University Press
  • ISBN-10: 110842581X
  • ISBN-13: 9781108425810
Kitos knygos pagal šią temą:
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e. universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.

Global equivariant homotopy theory is presented in this self-contained book, ideal for graduate students and researchers in algebraic topology. It is a comprehensive research monograph at the forefront of current research, written by a leading expert. The book's many examples and sample calculations make it suitable for an advanced graduate class.

Recenzijos

'This elegant monograph develops the theory of global equivariant spectra from scratch, discusses a wealth of interesting examples, and will no doubt be a catalyst for exciting developments in equivariant topology.' Gregory Z. Arone, Mathematical Reviews Clippings

Daugiau informacijos

A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Preface vii
1 Unstable global homotopy theory
1(91)
1.1 Orthogonal spaces and global equivalences
2(29)
1.2 Global model structure for orthogonal spaces
31(23)
1.3 Monoidal structures
54(10)
1.4 Global families
64(13)
1.5 Equivariant homotopy sets
77(15)
2 Ultra-commutative monoids
92(135)
2.1 Global model structure
94(16)
2.2 Global power monoids
110(23)
2.3 Examples
133(23)
2.4 Global forms of BO
156(30)
2.5 Global group completion and units
186(41)
3 Equivariant stable homotopy theory
227(121)
3.1 Equivariant orthogonal spectra
228(33)
3.2 The Wirthmuller isomorphism and transfers
261(27)
3.3 Geometric fixed points
288(17)
3.4 The double coset formula
305(27)
3.5 Products
332(16)
4 Global stable homotopy theory
348(113)
4.1 Orthogonal spectra as global homotopy types
349(18)
4.2 Global functors
367(18)
4.3 Global model structures for orthogonal spectra
385(24)
4.4 Triangulated global stable homotopy categories
409(21)
4.5 Change of families
430(31)
5 Ultra-commutative ring spectra
461(82)
5.1 Power operations
462(19)
5.2 Comonadic description of global power functors
481(25)
5.3 Examples
506(18)
5.4 Global model structure
524(19)
6 Global Thom and K-theory spectra
543(144)
6.1 Global Thom spectra
544(40)
6.2 Equivariant bordism
584(42)
6.3 Connective global K-theory
626(35)
6.4 Periodic global K-theory
661(26)
Appendix A Compactly generated spaces 687(48)
Appendix B Equivariant spaces 735(58)
Appendix C Enriched functor categories 793(16)
References 809(10)
Index of symbols 819(3)
Index 822
Stefan Schwede is Professor in the Mathematical Institute at the Rheinische Friedrich-Wilhelms-Universität Bonn. His main area of expertise is algebraic topology, specifically stable homotopy theory.