Atnaujinkite slapukų nuostatas

El. knyga: GPS Satellite Surveying 4th Edition [Wiley Online]

(University of Maine, Orono), ,
  • Formatas: 840 pages
  • Išleidimo metai: 07-Apr-2015
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119018617
  • ISBN-13: 9781119018612
  • Wiley Online
  • Kaina: 195,55 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 840 pages
  • Išleidimo metai: 07-Apr-2015
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119018617
  • ISBN-13: 9781119018612
Employ the latest satellite positioning tech with this extensive guide

GPS Satellite Surveying is the classic text on the subject, providing the most comprehensive coverage of global navigation satellite systems applications for surveying. Fully updated and expanded to reflect the field's latest developments, this new edition contains new information on GNSS antennas, Precise Point Positioning, Real-time Relative Positioning, Lattice Reduction, and much more. New contributors offer additional insight that greatly expands the book's reach, providing readers with complete, in-depth coverage of geodetic surveying using satellite technologies. The newest, most cutting-edge tools, technologies, and applications are explored in-depth to help readers stay up to date on best practices and preferred methods, giving them the understanding they need to consistently produce more reliable measurement.

Global navigation satellite systems have an array of uses in military, civilian, and commercial applications. In surveying, GNSS receivers are used to position survey markers, buildings, and road construction as accurately as possible with less room for human error. GPS Satellite Surveying provides complete guidance toward the practical aspects of the field, helping readers to:

  • Get up to speed on the latest GPS/GNSS developments
  • Understand how satellite technology is applied to surveying
  • Examine in-depth information on adjustments and geodesy
  • Learn the fundamentals of positioning, lattice adjustment, antennas, and more

The surveying field has seen quite an evolution of technology in the decade since the last edition's publication. This new edition covers it all, bringing the reader deep inside the latest tools and techniques being used on the job. Surveyors, engineers, geologists, and anyone looking to employ satellite positioning will find GPS Satellite Surveying to be of significant assistance.

Preface xv
Acknowledgments xix
Abbreviations xxi
1 Introduction 1(10)
2 Least-Squares Adjustments 11(70)
2.1 Elementary Considerations
12(2)
2.1.1 Statistical Nature of Surveying Measurements
12(1)
2.1.2 Observational Errors
13(1)
2.1.3 Accuracy and Precision
13(1)
2.2 Stochastic and Mathematical Models
14(3)
2.3 Mixed Model
17(6)
2.3.1 Linearization
18(1)
2.3.2 Minimization and Solution
19(1)
2.3.3 Cofactor Matrices
20(1)
2.3.4 A Posteriori Variance of Unit Weight
21(1)
2.3.5 Iterations
22(1)
2.4 Sequential Mixed Model
23(6)
2.5 Model Specifications
29(8)
2.5.1 Observation Equation Model
29(1)
2.5.2 Condition Equation Model
30(1)
2.5.3 Mixed Model with Observation Equations
30(2)
2.5.4 Sequential Observation Equation Model
32(1)
2.5.5 Observation Equation Model with Observed Parameters
32(2)
2.5.6 Mixed Model with Conditions
34(1)
2.5.7 Observation Equation Model with Conditions
35(2)
2.6 Minimal and Inner Constraints
37(5)
2.7 Statistics in Least-Squares Adjustment
42(20)
2.7.1 Fundamental Test
42(6)
2.7.2 Testing Sequential Least Squares
48(1)
2.7.3 General Linear Hypothesis
49(3)
2.7.4 Ellipses as Confidence Regions
52(4)
2.7.5 Properties of Standard Ellipses
56(4)
2.7.6 Other Measures of Precision
60(2)
2.8 Reliability
62(8)
2.8.1 Redundancy Numbers
62(2)
2.8.2 Controlling Type-II Error for a Single Blunder
64(3)
2.8.3 Internal Reliability
67(1)
2.8.4 Absorption
67(1)
2.8.5 External Reliability
68(1)
2.8.6 Correlated Cases
69(1)
2.9 Blunder Detection
70(2)
2.9.1 Tau Test
71(1)
2.9.2 Data Snooping
71(1)
2.9.3 Changing Weights of Observations
72(1)
2.10 Examples
72(5)
2.11 Kalman Filtering
77(4)
3 Recursive Least Squares 81(48)
3.1 Static Parameter
82(5)
3.2 Static Parameters and Arbitrary Time-Varying Variables
87(9)
3.3 Dynamic Constraints
96(16)
3.4 Static Parameters and Dynamic Constraints
112(13)
3.5 Static Parameter, Parameters Subject to Dynamic Constraints, and Arbitrary Time-Varying Parameters
125(4)
4 Geodesy 129(78)
4.1 International Terrestrial Reference Frame
131(10)
4.1.1 Polar Motion
132(1)
4.1.2 Tectonic Plate Motion
133(2)
4.1.3 Solid Earth Tides
135(1)
4.1.4 Ocean Loading
135(1)
4.1.5 Relating of Nearly Aligned Frames
136(2)
4.1.6 ITRF and NAD83
138(3)
4.2 International Celestial Reference System
141(10)
4.2.1 Transforming Terrestrial and Celestial Frames
143(6)
4.2.2 Time Systems
149(2)
4.3 Datum
151(15)
4.3.1 Geoid
152(5)
4.3.2 Ellipsoid of Rotation
157(1)
4.3.3 Geoid Undulations and Deflections of the Vertical
158(4)
4.3.4 Reductions to the Ellipsoid
162(4)
4.4 3D Geodetic Model
166(24)
4.4.1 Partial Derivatives
169(1)
4.4.2 Reparameterization
170(1)
4.4.3 Implementation Considerations
171(3)
4.4.4 GPS Vector Networks
174(2)
4.4.5 Transforming Terrestrial and Vector Networks
176(2)
4.4.6 GPS Network Examples
178(12)
4.4.6.1 Montgomery County Geodetic Network
178(4)
4.4.6.2 SLC Engineering Survey
182(1)
4.4.6.3 Orange County Densification
183(7)
4.5 Ellipsoidal Model
190(7)
4.5.1 Reduction of Observations
191(4)
4.5.1.1 Angular Reduction to Geodesic
192(1)
4.5.1.2 Distance Reduction to Geodesic
193(2)
4.5.2 Direct and Inverse Solutions on the Ellipsoid
195(1)
4.5.3 Network Adjustment on the Ellipsoid
196(1)
4.6 Conformal Mapping Model
197(6)
4.6.1 Reduction of Observations
198(2)
4.6.2 Angular Excess
200(1)
4.6.3 Direct and Inverse Solutions on the Map
201(1)
4.6.4 Network Adjustment on the Map
201(2)
4.6.5 Similarity Revisited
203(4)
4.7 Summary
204(3)
5 Satellite Systems 207(50)
5.1 Motion of Satellites
207(18)
5.1.1 Kepler Elements
208(2)
5.1.2 Normal Orbital Theory
210(9)
5.1.3 Satellite Visibility and Topocentric Motion
219(1)
5.1.4 Perturbed Satellite Motion
219(6)
5.1.4.1 Gravitational Field of the Earth
220(2)
5.1.4.2 Acceleration due to the Sun and the Moon
222(1)
5.1.4.3 Solar Radiation Pressure
222(1)
5.1.4.4 Eclipse Transits and Yaw Maneuvers
223(2)
5.2 Global Positioning System
225(20)
5.2.1 General Description
226(2)
5.2.2 Satellite Transmissions at 2014
228(11)
5.2.2.1 Signal Structure
229(8)
5.2.2.2 Navigation Message
237(2)
5.2.3 GPS Modernization Comprising Block IIM, Block IIF, and Block III
239(19)
5.2.3.1 Introducing Binary Offset Carrier (BOC) Modulation
241(2)
5.2.3.2 Civil L2C Codes
243(1)
5.2.3.3 Civil L5 Code
243(1)
5.2.3.4 M-Code
244(1)
5.2.3.5 Civil L1C Code
244(1)
5.3 GLONASS
245(3)
5.4 Galileo
248(2)
5.5 QZSS
250(2)
5.6 Beidou
252(2)
5.7 IRNSS
254(1)
5.8 SBAS: WAAS, EGNOS, GAGAN, MSAS, and SDCM
254(3)
6 GNSS Positioning Approaches 257(144)
6.1 Observables
258(17)
6.1.1 Undifferenced Functions
261(10)
6.1.1.1 Pseudoranges
261(2)
6.1.1.2 Carrier Phases
263(3)
6.1.1.3 Range plus Ionosphere
266(1)
6.1.1.4 Ionospheric-Free Functions
266(1)
6.1.1.5 Ionospheric Functions
267(1)
6.1.1.6 Multipath Functions
267(1)
6.1.1.7 Ambiguity-Corrected Functions
268(1)
6.1.1.8 Triple-Frequency Subscript Notation
269(2)
6.1.2 Single Differences
271(2)
6.1.2.1 Across-Receiver Functions
271(1)
6.1.2.2 Across-Satellite Functions
272(1)
6.1.2.3 Across-Time Functions
272(1)
6.1.3 Double Differences
273(2)
6.1.4 Triple Differences
275(1)
6.2 Operational Details
275(24)
6.2.1 Computing the Topocentric Range
275(1)
6.2.2 Satellite Timing Considerations
276(6)
6.2.2.1 Satellite Clock Correction and Timing Group Delay
278(1)
6.2.2.2 Intersignal Correction
279(3)
6.2.3 Cycle Slips
282(1)
6.2.4 Phase Windup Correction
283(3)
6.2.5 Multipath
286(6)
6.2.6 Phase Center Offset and Variation
292(3)
6.2.6.1 Satellite Phase Center Offset
292(1)
6.2.6.2 User Antenna Calibration
293(2)
6.2.7 GNSS Services
295(4)
6.2.7.1 IGS
295(3)
6.2.7.2 Online Computing
298(1)
6.3 Navigation Solution
299(5)
6.3.1 Linearized Solution
299(2)
6.3.2 DOPs and Singularities
301(2)
6.3.3 Nonlinear Closed Solution
303(1)
6.4 Relative Positioning
304(20)
6.4.1 Nonlinear Double-Difference Pseudorange Solution
305(1)
6.4.2 Linearized Double- and Triple-Differenced Solutions
306(4)
6.4.3 Aspects of Relative Positioning
310(5)
6.4.3.1 Singularities
310(1)
6.4.3.2 Impact of a Priori Position Error
311(1)
6.4.3.3 Independent Baselines
312(2)
6.4.3.4 Antenna Swap Technique
314(1)
6.4.4 Equivalent Undifferenced Formulation
315(1)
6.4.5 Ambiguity Function
316(3)
6.4.6 GLONASS Carrier Phase
319(5)
6.5 Ambiguity Fixing
324(33)
6.5.1 The Constraint Solution
324(3)
6.5.2 LAMBDA
327(7)
6.5.3 Discernibility
334(3)
6.5.4 Lattice Reduction and Integer Least Squares
337(20)
6.5.4.1 Branch-and-Bound Approach
338(11)
6.5.4.2 Finke-Pohst Algorithm
349(2)
6.5.4.3 Lattice Reduction Algorithms
351(3)
6.5.4.4 Other Searching Strategies
354(2)
6.5.4.5 Connection Between LAMBDA and LLL Methods
356(1)
6.6 Network-Supported Positioning
357(25)
6.6.1 PPP
357(6)
6.6.2 CORS
363(4)
6.6.2.1 Differential Phase and Pseudorange Corrections
363(2)
6.6.2.2 RTK
365(2)
6.6.3 PPP-RTK
367(15)
6.6.3.1 Single-Frequency Solution
367(5)
6.6.3.2 Dual-Frequency Solutions
372(7)
6.6.3.3 Across-Satellite Differencing
379(3)
6.7 Triple-Frequency Solutions
382(16)
6.7.1 Single-Step Position Solution
382(4)
6.7.2 Geometry-Free TCAR
386(9)
6.7.2.1 Resolving EWL Ambiguity
389(2)
6.7.2.2 Resolving the WL Ambiguity
391(2)
6.7.2.3 Resolving the NL Ambiguity
393(2)
6.7.3 Geometry-Based TCAR
395(1)
6.7.4 Integrated TCAR
396(1)
6.7.5 Positioning with Resolved Wide Lanes
397(1)
6.8 Summary
398(3)
7 Real-Time Kinematics Relative Positioning 401(74)
7.1 Multisystem Considerations
402(1)
7.2 Undifferenced and Across-Receiver Difference Observations
403(5)
7.3 Linearization and Hardware Bias Parameterization
408(10)
7.4 RTK Algorithm for Static and Short Baselines
418(11)
7.4.1 Illustrative Example
422(7)
7.5 RTK Algorithm for Kinematic Rovers and Short Baselines
429(6)
7.5.1 Illustrative Example
431(4)
7.6 RTK Algorithm with Dynamic Model and Short Baselines
435(6)
7.6.1 Illustrative Example
437(4)
7.7 RTK Algorithm with Dynamic Model and Long Baselines
441(4)
7.7.1 Illustrative Example
442(3)
7.8 RTK Algorithms with Changing Number of Signals
445(5)
7.9 Cycle Slip Detection and Isolation
450(16)
7.9.1 Solutions Based on Signal Redundancy
455(11)
7.10 Across-Receiver Ambiguity Fixing
466(7)
7.10.1 Illustrative Example
470(3)
7.11 Software Implementation
473(2)
8 Troposphere And Ionosphere 475(38)
8.1 Overview
476(3)
8.2 Tropospheric Refraction and Delay
479(8)
8.2.1 Zenith Delay Functions
482(1)
8.2.2 Mapping Functions
482(3)
8.2.3 Precipitable Water Vapor
485(2)
8.3 Troposphere Absorption
487(9)
8.3.1 The Radiative Transfer Equation
487(3)
8.3.2 Absorption Line Profiles
490(2)
8.3.3 General Statistical Retrieval
492(2)
8.3.4 Calibration of WVR
494(2)
8.4 Ionospheric Refraction
496(17)
8.4.1 Index of Ionospheric Refraction
499(5)
8.4.2 Ionospheric Function and Cycle Slips
504(1)
8.4.3 Single-Layer Ionospheric Mapping Function
505(2)
8.4.4 VTEC from Ground Observations
507(2)
8.4.5 Global Ionospheric Maps
509(6)
8.4.5.1 IGS GIMs
509(1)
8.4.5.2 International Reference Ionosphere
509(1)
8.4.5.3 GPS Broadcast Ionospheric Model
510(1)
8.4.5.4 NeQuick Model
510(1)
8.4.5.5 Transmission to the User
511(2)
9 GNSS Receiver Antennas 513(140)
9.1 Elements of Electromagnetic Fields and Electromagnetic Waves
515(31)
9.1.1 Electromagnetic Field
515(3)
9.1.2 Plane Electromagnetic Wave
518(7)
9.1.3 Complex Notations and Plane Wave in Lossy Media
525(5)
9.1.4 Radiation and Spherical Waves
530(6)
9.1.5 Receiving Mode
536(1)
9.1.6 Polarization of Electromagnetic Waves
537(7)
9.1.7 The dB Scale
544(2)
9.2 Antenna Pattern and Gain
546(19)
9.2.1 Receiving GNSS Antenna Pattern and Reference Station and Rover Antennas
546(7)
9.2.2 Directivity
553(5)
9.2.3 Polarization Properties of the Receiving GNSS Antenna
558(4)
9.2.4 Antenna Gain
562(2)
9.2.5 Antenna Effective Area
564(1)
9.3 Phase Center
565(13)
9.3.1 Antenna Phase Pattern
566(2)
9.3.2 Phase Center Offset and Variations
568(7)
9.3.3 Antenna Calibrations
575(2)
9.3.4 Group Delay Pattern
577(1)
9.4 Diffraction and Multipath
578(22)
9.4.1 Diffraction Phenomena
578(7)
9.4.2 General Characterization of Carrier Phase Multipath
585(2)
9.4.3 Specular Reflections
587(6)
9.4.4 Antenna Down-Up Ratio
593(4)
9.4.5 PCV and PCO Errors Due to Ground Multipath
597(3)
9.5 Transmission Lines
600(9)
9.5.1 Transmission Line Basics
600(6)
9.5.2 Antenna Frequency Response
606(2)
9.5.3 Cable Losses
608(1)
9.6 Signal-to-Noise Ratio
609(11)
9.6.1 Noise Temperature
609(2)
9.6.2 Characterization of Noise Sources
611(4)
9.6.3 Signal and Noise Propagation through a Chain of Circuits
615(4)
9.6.4 SNR of the GNSS Receiving System
619(1)
9.7 Antenna Types
620(33)
9.7.1 Patch Antennas
620(9)
9.7.2 Other Types of Antennas
629(1)
9.7.3 Flat Metal Ground Planes
629(5)
9.7.4 Impedance Ground Planes
634(8)
9.7.5 Vertical Choke Rings and Compact Rover Antenna
642(2)
9.7.6 Semitransparent Ground Planes
644(1)
9.7.7 Array Antennas
645(5)
9.7.8 Antenna Manufacturing Issues
650(3)
Appendixes
A General Background
653(44)
A.1 Spherical Trigonometry
653(4)
A.2 Rotation Matrices
657(1)
A.3 Linear Algebra
657(24)
A.3.1 Determinants and Matrix Inverse
658(1)
A.3.2 Eigenvalues and Eigenvectors
659(1)
A.3.3 Eigenvalue Decomposition
660(1)
A.3.4 Quadratic Forms
661(3)
A.3.5 Matrix Partitioning
664(2)
A.3.6 Cholesky Decomposition
666(3)
A.3.7 Partial Minimization of Quadratic Functions
669(4)
A.3.8 QR Decomposition
673(3)
A.3.9 Rank One Update of Cholesky Decomposition
676(5)
A.4 Linearization
681(2)
A.5 Statistics
683(14)
A.5.1 One-Dimensional Distributions
683(5)
A.5.2 Distribution of Simple Functions
688(1)
A.5.3 Hypothesis Tests
689(2)
A.5.4 Multivariate Distributions
691(2)
A.5.5 Variance-Covariance Propagation
693(2)
A.5.6 Multivariate Normal Distribution
695(2)
B The Ellipsoid
697(18)
B.1 Geodetic Latitude, Longitude, and Height
698(5)
B.2 Computation of the Ellipsoidal Surface
703(12)
B.2.1 Fundamental Coefficients
703(2)
B.2.2 Gauss Curvature
705(1)
B.2.3 Elliptic Arc
706(1)
B.2.4 Angle
706(1)
B.2.5 Isometric Latitude
707(1)
B.2.6 Differential Equation of the Geodesic
708(3)
B.2.7 The Gauss Midlatitude Solution
711(2)
B.2.8 Angular Excess
713(1)
B.2.9 Transformation in a Small Region
713(2)
C Conformal Mapping
715(26)
C.1 Conformal Mapping of Planes
716(3)
C.2 Conformal Mapping of General Surfaces
719(2)
C.3 Isometric Plane
721(1)
C.4 Popular Conformal Mappings
722(19)
C.4.1 Equatorial Mercator
723(1)
C.4.2 Transverse Mercator
724(2)
C.4.3 Lambert Conformal
726(12)
C.4.4 SPC and UTM
738(3)
D Vector Calculus And Delta Function
741(6)
E Electromagnetic Field Generated By Arbitrary Sources, Magnetic Currents, Boundary Conditions, And Images
747(8)
F Diffraction Over Half-Plane
755(4)
G Single Cavity Mode Approximation With Patch Antenna Analysis
759(4)
H Patch Antennas With Artificial Dielectric Substrates
763(6)
I Convex Patch Array Geodetic Antenna
769(4)
References 773(20)
Author Index 793(8)
Subject Index 801
ALFRED LEICK, PHD, has served on the Board of Directors of the American Association of Geodetic Surveying. He currently lectures at Michigan Technological University and is the Editor-in-Chief of scholarly journal GPS Solutions.

LEV RAPOPORT, PHD, received Russia's highest scientific degree, Doctor of Science, from the Institute of Control Sciences of the Russian Academy of Science, where he is now head of laboratory. He is also a professor at the Moscow Institute of Physics and Technology.

DMITRY TATARNIKOV, PHD, received the Doctor of Science degree from Moscow Aviation Institute, where he is currently a professor. He is also the Chief of GNSS Antenna Design and Development for Topcon Technology Center.