Atnaujinkite slapukų nuostatas

El. knyga: Graph Coloring Problems

(University of Southern Denmark, Odense, Denmark), (University of Southern Denmark, Odense, Denmark)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A study of graph coloring theory and discrete mathematics. Explains important definitions and known theorems, identifies some 200 unsolved problems in graph coloring theory, and discusses the history and related results of each problem. Includes a bibliography at the end of each section. Of interest to discrete mathematicians, graph theorists, operations researchers, and theoretical computer scientists. Annotation copyright Book News, Inc. Portland, Or.

Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.
Planar Graphs.
Graphs on Higher Surfaces.
Degrees.
Critical Graphs.
The Conjectures of Hadwiger and Hajos.
Sparse Graphs.
Perfect Graphs.
Geometric and Combinatorial Graphs.
Algorithms.
Constructions.
Edge Colorings.
Orientations and Flows.
Chromatic Polynomials.
Hypergraphs.
Infinite Chromatic Graphs.
Miscellaneous Problems.
Indexes.
Tommy R. Jensen and Bjarne Toft are the authors of Graph Coloring Problems, published by Wiley.