Atnaujinkite slapukų nuostatas

El. knyga: Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture

  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Feb-2012
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118205563
  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Feb-2012
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118205563

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"This book provides an overview of this development as well as describes how the many different results are related"--

"Written by world authorities on graph theory, this book features many new advances and applications in graph edge coloring, describes how the results are interconnected, and provides historial context throughout. Chapter coverage includes an introduction to coloring preliminaries and lower and upper bounds; the Vizing fan; the Kierstead path; simple graphs and line graphs of multigraphs; the Tashkinov tree; Goldberg's conjecture; extreme graphs; generalized edge coloring; and open problems. It serves asa reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization, as well as a graduate-level course book for students of mathematics, optimization, and computer science"--



Features recent advances and new applications in graph edge coloring

Reviewing recent advances in the Edge Coloring Problem, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring.

The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explore important topics such as:

  • Use of Tashkinov trees to obtain an asymptotic positive solution to Goldberg's conjecture

  • Application of Vizing fans to obtain both known and new results

  • Kierstead paths as an alternative to Vizing fans

  • Classification problem of simple graphs

  • Generalized edge coloring in which a color may appear more than once at a vertex

This book also features first-time English translations of two groundbreaking papers written by Vadim Vizing on an estimate of the chromatic class of a p-graph and the critical graphs within a given chromatic class.

Written by leading experts who have reinvigorated research in the field, Graph Edge Coloring is an excellent book for mathematics, optimization, and computer science courses at the graduate level. The book also serves as a valuable reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization.

Recenzijos

College mathematics collections need just this sort of rarity-accounts of major unsolved problems, elementary but still comprehensive.  Summing Up: Recommended.  Upper-division undergraduates.  (Choice, 1 September 2012)

Preface xi
1 Introduction
1(18)
1.1 Graphs
1(1)
1.2 Coloring Preliminaries
2(3)
1.3 Critical Graphs
5(1)
1.4 Lower Bounds and Elementary Graphs
6(5)
1.5 Upper Bounds and Coloring Algorithms
11(4)
1.6 Notes
15(4)
2 Vizing Fans
19(24)
2.1 The Fan Equation and the Classical Bounds
19(5)
2.2 Adjacency Lemmas
24(2)
2.3 The Second Fan Equation
26(5)
2.4 The Double Fan
31(1)
2.5 The Fan Number
32(7)
2.6 Notes
39(4)
3 Kierstead Paths
43(8)
3.1 Kierstead's Method
43(3)
3.2 Short Kierstead's Paths
46(3)
3.3 Notes
49(2)
4 Simple Graphs and Line Graphs
51(64)
4.1 Class One and Class Two Graphs
51(3)
4.2 Graphs whose Core has Maximum Degree Two
54(9)
4.3 Simple Overfull Graphs
63(10)
4.4 Adjacency Lemmas for Critical Class Two Graphs
73(11)
4.5 Average Degree of Critical Class Two Graphs
84(5)
4.6 Independent Vertices in Critical Class Two Graphs
89(4)
4.7 Constructions of Critical Class Two Graphs
93(8)
4.8 Hadwiger's Conjecture for Line Graphs
101(4)
4.9 Simple Graphs on Surfaces
105(5)
4.10 Notes
110(5)
5 Tashkinov Trees
115(40)
5.1 Tashkinov's Method
115(12)
5.2 Extended Tashkinov Trees
127(12)
5.3 Asymptotic Bounds
139(5)
5.4 Tashkinov's Coloring Algorithm
144(4)
5.5 Polynomial Time Algorithms
148(4)
5.6 Notes
152(3)
6 Goldberg's Conjecture
155(42)
6.1 Density and Fractional Chromatic Index
155(5)
6.2 Balanced Tashkinov Trees
160(2)
6.3 Obstructions
162(21)
6.4 Approximation Algorithms
183(2)
6.5 Goldberg's Conjecture for Small Graphs
185(1)
6.6 Another Classification Problem for Graphs
186(7)
6.7 Notes
193(4)
7 Extreme Graphs
197(16)
7.1 Shannon's Bound and Ring Graphs
197(4)
7.2 Vizing's Bound and Extreme Graphs
201(2)
7.3 Extreme Graphs and Elementary Graphs
203(2)
7.4 Upper Bounds for χ' Depending on Δ and μ
205(4)
7.5 Notes
209(4)
8 Generalized Edge Colorings of Graphs
213(32)
8.1 Equitable and Balanced Edge Colorings
213(9)
8.2 Full Edge Colorings and the Cover Index
222(2)
8.3 Edge Colorings of Weighted Graphs
224(4)
8.4 The Fan Equation for the Chromatic Index χ'f
228(11)
8.5 Decomposing Graphs into Simple Graphs
239(4)
8.6 Notes
243(2)
9 Twenty Pretty Edge Coloring Conjectures
245(24)
Appendix A Vizing's Two Fundamental Papers
269(12)
A.1 On an Estimate of the Chromatic Class of a p-Graph
269(4)
References
272(1)
A.2 Critical Graphs with a Given Chromatic Class
273(8)
References
278(3)
Appendix B Fractional Edge Colorings
281(31)
B.1 The Fractional Chromatic Index
281(3)
B.2 The Matching Polytope
284(6)
B.3 A Formula for χ'f
290(22)
References
295(17)
Symbol Index 312(2)
Name Index 314(4)
Subject Index 318
Michael Stiebitz, PhD, is Professor of Mathematics at the Technical University of Ilmenau, Germany. He is the author of numerous journal articles in his areas of research interest, which include graph theory, combinatorics, cryptology, and linear algebra. Diego Scheide, PhD, is a Postdoctoral Researcher in the Department of Mathematics at Simon Fraser University, Canada.

Bjarne Toft, PhD, is Associate Professor in the Department of Mathematics and Computer Science at the University of Southern Denmark.

Lene M. Favrholdt, PhD, is Associate Professor in the Department of Mathematics and Computer Science at the University of Southern Denmark.