Atnaujinkite slapukų nuostatas

El. knyga: Graph Learning Techniques

, , (Principal Scientist at CSIRO, Australia), ,
  • Formatas: 180 pages
  • Išleidimo metai: 26-Feb-2025
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781040302217
  • Formatas: 180 pages
  • Išleidimo metai: 26-Feb-2025
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781040302217

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This comprehensive guide addresses key challenges at the intersection of data science, graph learning, and privacy preservation.


It begins with foundational graph theory, covering essential definitions, concepts, and various types of graphs. The book bridges the gap between theory and application, equipping readers with the skills to translate theoretical knowledge into actionable solutions for complex problems. It includes practical insights into brain network analysis and the dynamics of COVID-19 spread. The guide provides a solid understanding of graphs by exploring different graph representations and the latest advancements in graph learning techniques. It focuses on diverse graph signals and offers a detailed review of state-of-the-art methodologies for analyzing these signals. A major emphasis is placed on privacy preservation, with comprehensive discussions on safeguarding sensitive information within graph structures. The book also looks forward, offering insights into emerging trends, potential challenges, and the evolving landscape of privacy-preserving graph learning.


This resource is a valuable reference for advance undergraduate and postgraduate students in courses related to Network Analysis, Privacy and Security in Data Analytics, and Graph Theory and Applications in Healthcare.



This comprehensive guide addresses key challenges at the intersection of data science, graph learning, and privacy preservation. A valuable reference for advance undergraduate and postgraduate students in Network Analysis, Privacy and Security in Data Analytics, Graph Theory, and Applications in Healthcare.

Table of Contents

Abstract

List of Figures

List of Tables

Contributors

1. Introduction

2. Privacy Considerations in Graph and Graph Learning

3. Existing Technologies of Graph Learning

4. Graph Extraction and Topology Learning of Band-limited Signals

5. Graph Learning from Band-Limited Data by Graph Fourier Transform Analysis

6. Graph Topology Learning of Brain Signals

7. Graph Topology Learning of COVID-19

8. Preserving the Privacy of Latent Information for Graph-Structured Data

9. Future Directions and Challenges

10. Appendix

Bibliography

Index

Baoling Shan is currently a Lecturer at University of Science and Technology Beijing, Beijing, China.

Xin Yuan is currently a Senior Research Scientist at CSIRO, Sydney, NSW, Australia, and an Adjunct Senior Lecturer at the University of New South Wales.

Wei Ni is a Principal Research Scientist at CSIRO, Sydney, Australia, a Fellow of IEEE, a Conjoint Professor at the University of New South Wales, an Adjunct Professor at the University of Technology Sydney, and an Honorary Professor at Macquarie University.

Ren Ping Liu is a Professor and the Head of the Discipline of Network and Cybersecurity, University of Technology Sydney (UTS), Ultimo, NSW, Australia.

Eryk Dutkiewicz is currently the Head of School of Electrical and Data Engineering at the University of Technology Sydney, Australia. He is a Senior Member of IEEE and his research interests cover 5G/6G and IoT networks.