Preface |
|
vii | |
|
|
1 | (34) |
|
|
2 | (3) |
|
1.2 The degree of a vertex* |
|
|
5 | (1) |
|
|
6 | (4) |
|
|
10 | (3) |
|
|
13 | (4) |
|
|
17 | (2) |
|
1.7 Contraction and minors* |
|
|
19 | (3) |
|
|
22 | (1) |
|
|
23 | (4) |
|
1.10 Other notions of graphs |
|
|
27 | (8) |
|
|
30 | (3) |
|
|
33 | (2) |
|
2 Matching, Covering and Packing |
|
|
35 | (24) |
|
2.1 Matching in bipartite graphs* |
|
|
36 | (5) |
|
2.2 Matching in general graphs(*) |
|
|
41 | (4) |
|
2.3 The Erdos-Posa theorem |
|
|
45 | (3) |
|
2.4 Tree packing and arboricity |
|
|
48 | (4) |
|
|
52 | (7) |
|
|
53 | (3) |
|
|
56 | (3) |
|
|
59 | (30) |
|
3.1 2-Connected graphs and subgraphs* |
|
|
59 | (3) |
|
3.2 The structure of 3-connected graphs(*) |
|
|
62 | (5) |
|
|
67 | (5) |
|
|
72 | (2) |
|
3.5 Linking pairs of vertices?(*) |
|
|
74 | (15) |
|
|
82 | (3) |
|
|
85 | (4) |
|
|
89 | (30) |
|
4.1 Topological prerequisites* |
|
|
90 | (2) |
|
|
92 | (6) |
|
|
98 | (4) |
|
4.4 Planar graphs: Kuratowski's theorem* |
|
|
102 | (5) |
|
4.5 Algebraic planarity criteria |
|
|
107 | (3) |
|
|
110 | (9) |
|
|
113 | (4) |
|
|
117 | (2) |
|
|
119 | (30) |
|
5.1 Colouring maps and planar graphs* |
|
|
120 | (2) |
|
|
122 | (5) |
|
|
127 | (2) |
|
|
129 | (6) |
|
|
135 | (14) |
|
|
142 | (4) |
|
|
146 | (3) |
|
|
149 | (24) |
|
|
150 | (1) |
|
|
151 | (3) |
|
|
154 | (5) |
|
|
159 | (3) |
|
6.5 Flow-colouring duality |
|
|
162 | (3) |
|
6.6 Tutte's flow conjectures |
|
|
165 | (8) |
|
|
169 | (2) |
|
|
171 | (2) |
|
|
173 | (36) |
|
|
174 | (6) |
|
|
180 | (3) |
|
7.3 Hadwiger's conjecture* |
|
|
183 | (4) |
|
7.4 Szemeredi's regularity lemma |
|
|
187 | (8) |
|
7.5 Applying the regularity lemma |
|
|
195 | (14) |
|
|
201 | (3) |
|
|
204 | (5) |
|
|
209 | (74) |
|
8.1 Basic notions, facts and techniques* |
|
|
210 | (9) |
|
8.2 Paths, trees, and ends(*) |
|
|
219 | (9) |
|
8.3 Homogeneous and universal graphs* |
|
|
228 | (3) |
|
8.4 Connectivity and matching |
|
|
231 | (11) |
|
|
242 | (3) |
|
8.6 Graphs with ends: the complete picture |
|
|
245 | (9) |
|
8.7 The topological cycle space |
|
|
254 | (4) |
|
8.8 Infinite graphs as limits of finite ones |
|
|
258 | (25) |
|
|
261 | (12) |
|
|
273 | (10) |
|
9 Ramsey Theory for Graphs |
|
|
283 | (24) |
|
9.1 Ramsey's original theorems* |
|
|
284 | (3) |
|
|
287 | (3) |
|
9.3 Induced Ramsey theorems |
|
|
290 | (10) |
|
9.4 Ramsey properties and connectivity(*) |
|
|
300 | (7) |
|
|
303 | (1) |
|
|
304 | (3) |
|
|
307 | (16) |
|
10.1 Sufficient conditions* |
|
|
307 | (4) |
|
10.2 Hamilton cycles and degree sequences |
|
|
311 | (3) |
|
10.3 Hamilton cycles in the square of a graph |
|
|
314 | (9) |
|
|
319 | (1) |
|
|
320 | (3) |
|
|
323 | (24) |
|
11.1 The notion of a random graph* |
|
|
324 | (5) |
|
11.2 The probabilistic method* |
|
|
329 | (3) |
|
11.3 Properties of almost all graphs* |
|
|
332 | (3) |
|
11.4 Threshold functions and second moments |
|
|
335 | (12) |
|
|
342 | (2) |
|
|
344 | (3) |
|
|
347 | (46) |
|
12.1 Well-quasi-ordering(*) |
|
|
348 | (1) |
|
12.2 The graph minor theorem for trees |
|
|
349 | (2) |
|
12.3 Tree-decompositions(*) |
|
|
351 | (4) |
|
|
355 | (5) |
|
|
360 | (9) |
|
12.6 Tree-decompositions and forbidden minors |
|
|
369 | (5) |
|
12.7 The graph minor theorem(*) |
|
|
374 | (19) |
|
|
382 | (6) |
|
|
388 | (5) |
A Infinite sets |
|
393 | (6) |
B Surfaces |
|
399 | (8) |
Hints for all the exercises |
|
407 | (2) |
Index |
|
409 | (18) |
Symbol Index |
|
427 | |