Atnaujinkite slapukų nuostatas

El. knyga: Graphs and Cubes

  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 30-Aug-2011
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461407973
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 30-Aug-2011
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461407973
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This introductory text in graph theory focuses on partial cubes, which are graphs that are isometrically embeddable into hypercubes of an arbitrary dimension, as well as bipartite graphs, and cubical graphs. This branch of graph theory has developed rapidly during the past three decades, producing exciting results and establishing links to other branches of mathematics.

 

Currently, Graphs and Cubes is the only book available on the market that presents a comprehensive coverage of cubical graph and partial cube theories.  Many exercises, along with historical notes, are included at the end of every chapter, and readers are encouraged to explore the exercises fully, and use them as a basis for research projects.

 

The prerequisites for this text include familiarity with basic mathematical concepts and methods on the level of undergraduate courses in discrete mathematics, linear algebra, group theory, and topology of Euclidean spaces. While the book is intended for lower-division graduate students in mathematics, it will be of interest to a much wider audience; because of their rich structural properties, partial cubes appear in theoretical computer science, coding theory, genetics, and even the political and social sciences.

Recenzijos

From the reviews:

This book focuses on a class of bipartite graphs known as partial cubes, which are subgraphs of hypercubes (cubes) that allow isometric embeddings into a cube. the book is aimed at lower-level graduate students. Ample problems as well as historic notes and suggested reading are available at the end of each chapter. Overall, it is a good development of the subject. Summing Up: Recommended. Upper-division undergraduates and above. (J. R. Burke, Choice, Vol. 49 (9), May, 2012)

Preface vii
1 Graphs
1(22)
1.1 Graphs and Drawings
1(3)
1.2 Isomorphisms and Automorphisms
4(1)
1.3 Walks, Paths, and Cycles
5(3)
1.4 Subgraphs and Embeddings
8(1)
1.5 Special Families of Graphs
9(1)
1.6 New Graphs From Old Ones
10(2)
1.7 Other Notions of Graphs
12(1)
1.8 Infinite Graphs
13(2)
1.9 Matchings
15(8)
Notes
17(2)
Exercises
19(4)
2 Bipartite Graphs
23(28)
2.1 Standard Characterizations
23(2)
2.2 Betweenness and Convexity in Graphs
25(2)
2.3 Fundamental Sets and Relations
27(10)
2.4 Trees
37(4)
2.5 Art Gallery Problem
41(10)
Notes
45(1)
Exercises
46(5)
3 Cubes
51(38)
3.1 Cubes in Geometry
51(2)
3.2 Boolean Cubes
53(2)
3.3 Boolean Lattices
55(2)
3.4 Finite Cubes
57(2)
3.5 Arbitrary Cubes
59(3)
3.6 Cartesian Products
62(5)
3.7 Metric Structures on Cubes
67(6)
3.8 The Automorphism Group of a Cube
73(3)
3.9 Embeddings
76(1)
3.10 Characterizations of Cubes
77(12)
Notes
81(2)
Exercises
83(6)
4 Cubical Graphs
89(38)
4.1 Definitions and Examples
89(4)
4.2 A Criterion
93(4)
4.3 Dichotomic Trees
97(3)
4.4 Operations on Cubical Graphs
100(3)
4.5 Vertex- and Edge-Pastings of Graphs
103(5)
4.6 Separation and Connectivity
108(7)
4.7 Critical Graphs
115(12)
Notes
120(1)
Exercises
121(6)
5 Partial Cubes
127(56)
5.1 Definitions and Examples
127(1)
5.2 Well-Graded Families of Sets
128(4)
5.3 Partial Orders
132(2)
5.4 Hereditary Structures
134(2)
5.5 Characterizations
136(6)
5.6 Isometric Dimension
142(2)
5.7 Cartesian Products of Partial Cubes
144(2)
5.8 Pasting Together Partial Cubes
146(3)
5.9 Expansions and Contractions of Partial Cubes
149(8)
5.10 Uniqueness of Isometric Embeddings
157(6)
5.11 Median Graphs
163(2)
5.12 Average Length and the Wiener Index
165(3)
5.13 Linear and Weak Orders
168(15)
Notes
174(2)
Exercises
176(7)
6 Lattice Embeddings
183(24)
6.1 Integer Lattices
183(3)
6.2 Tree Embeddings
186(2)
6.3 The Automorphism Group of a Lattice
188(3)
6.4 Lattice Dimension of Finite Partial Cubes
191(6)
6.5 Lattice Dimension of Infinite Partial Cubes
197(3)
6.6 Lattice Dimensions of Products and Pasted Graphs
200(7)
Notes
204(1)
Exercises
205(2)
7 Hyperplane Arrangements
207(30)
7.1 Hyperplanes
207(1)
7.2 Arrangements of Hyperplanes
208(3)
7.3 Region Graphs
211(6)
7.4 The Lattice Dimension of a Region Graph
217(2)
7.5 Acyclic Orientations
219(2)
7.6 Zonotopal Tilings
221(4)
7.7 Families of Binary Relations
225(12)
Notes
231(1)
Exercises
232(5)
8 Token Systems
237(36)
8.1 Algebraic Preliminaries
237(1)
8.2 Automata and Token Systems
238(3)
8.3 Cubical Token Systems
241(4)
8.4 Properties of Tokens and Contents of Messages
245(4)
8.5 Graphs of Cubical Systems
249(1)
8.6 Examples of Cubical Systems
250(2)
8.7 Media
252(2)
8.8 Contents in Media Theory
254(3)
8.9 Graphs of Media
257(2)
8.10 Examples of Media
259(2)
8.11 Oriented and Closed Media
261(4)
8.12 Random Walks on Token Systems
265(8)
Notes
269(1)
Exercises
270(3)
Notation 273(4)
References 277(6)
Index 283
Sergei Ovchinnikov is currently a mathematics professor at San Francisco State University.