|
|
1 | (6) |
|
Part I Algebraic Geometry: A Brief Recollection |
|
|
|
|
|
|
7 | (4) |
|
|
11 | (4) |
|
2.2.1 Zariski topology on A" |
|
|
11 | (2) |
|
2.2.2 The affine algebra K[ X] |
|
|
13 | (1) |
|
2.2.3 Products of affine varieties |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.3.1 Zariski topology on Pn |
|
|
15 | (1) |
|
2.4 Schemes --- Affine and Projective |
|
|
16 | (2) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
2.4.4 Ringed and geometric spaces |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
2.7 Sheaves of Ox-Modules |
|
|
20 | (3) |
|
2.7.1 The twisting sheaf Ox(1) |
|
|
21 | (1) |
|
2.7.2 Locally free sheaves |
|
|
22 | (1) |
|
2.7.3 The scheme V(Ω) associated to a rank n locally free sheaf Ω |
|
|
22 | (1) |
|
|
22 | (1) |
|
2.8 Attributes of Varieties |
|
|
23 | (4) |
|
2.8.1 Dimension of a topological space |
|
|
23 | (1) |
|
2.8.2 Geometric properties of varieties |
|
|
24 | (1) |
|
2.8.3 The Zariski tangent space |
|
|
24 | (1) |
|
2.8.4 The differential (dφ)x |
|
|
25 | (2) |
|
|
27 | (12) |
|
3.1 Introduction to Category Theory |
|
|
27 | (1) |
|
|
28 | (4) |
|
|
31 | (1) |
|
3.3 Enough Injective Lemmas |
|
|
32 | (5) |
|
3.4 Sheaf and Local Cohomology |
|
|
37 | (2) |
|
|
39 | (12) |
|
|
39 | (3) |
|
|
42 | (1) |
|
4.3 Compatible Weight Orders |
|
|
43 | (3) |
|
|
46 | (5) |
|
Part II Grassmann and Schubert Varieties |
|
|
|
5 The Grassmannian and Its Schubert Varieties |
|
|
51 | (22) |
|
5.1 Grassmannian and Flag Varieties |
|
|
51 | (2) |
|
5.2 Projective Variety Structure on Gd.n |
|
|
53 | (4) |
|
5.2.1 Plucker coordinates |
|
|
53 | (1) |
|
|
54 | (2) |
|
5.2.3 Plucker coordinates as T-weight vectors |
|
|
56 | (1) |
|
|
57 | (4) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (4) |
|
5.4.1 Generation by Standard Monomials |
|
|
62 | (1) |
|
5.4.2 Linear Independence of Standard Monomials |
|
|
63 | (2) |
|
5.5 Unions of Schubert Varieties |
|
|
65 | (2) |
|
|
67 | (1) |
|
|
67 | (6) |
|
6 Further Geometric Properties of Schubert Varieties |
|
|
73 | (22) |
|
|
73 | (4) |
|
6.2 Lemmas on Normality and Factoriality |
|
|
77 | (8) |
|
|
82 | (3) |
|
|
85 | (3) |
|
6.3.1 Stability for multiplication by certain parabolic subgroups |
|
|
86 | (2) |
|
|
88 | (2) |
|
|
90 | (5) |
|
|
95 | (22) |
|
|
95 | (2) |
|
|
97 | (6) |
|
7.3 Monomial Scheme Degenerations |
|
|
103 | (1) |
|
7.4 Application to the Degree of Xw |
|
|
104 | (4) |
|
7.5 Gorenstein Schubert Varieties |
|
|
108 | (9) |
|
Part III Flag Varieties and Related Varieties |
|
|
|
8 The Flag Variety: Geometric and Representation Theoretic Aspects |
|
|
117 | (12) |
|
|
117 | (1) |
|
8.2 Standard Monomials on the Flag Variety |
|
|
118 | (3) |
|
8.3 Toric Degeneration for the Flag Variety |
|
|
121 | (1) |
|
8.4 Representation Theoretic Aspects |
|
|
122 | (2) |
|
8.4.1 Application to Gd.n |
|
|
124 | (1) |
|
|
124 | (5) |
|
8.5.1 Description of the tangent space |
|
|
125 | (1) |
|
|
125 | (4) |
|
9 Relationship to Classical Invariant Theory |
|
|
129 | (14) |
|
9.1 Basic Definitions in Geometric Invariant Theory |
|
|
129 | (2) |
|
|
130 | (1) |
|
|
131 | (6) |
|
9.3 Connection to the Grassmannian |
|
|
137 | (6) |
|
10 Determinantal Varieties |
|
|
143 | (12) |
|
10.1 Determinantal Varieties |
|
|
143 | (2) |
|
10.1.1 The determinantal variety Dt |
|
|
143 | (1) |
|
10.1.2 Relationship between determinantal varieties and Schubert varieties |
|
|
144 | (1) |
|
10.2 Standard Monomial Basis for K[ Dt] |
|
|
145 | (2) |
|
10.2.1 The partial order ≥ |
|
|
146 | (1) |
|
10.2.2 Cogeneration of an Ideal |
|
|
147 | (1) |
|
10.3 Grobner Bases for Determinantal Varieties |
|
|
147 | (2) |
|
10.4 Connections with Classical Invariant Theory |
|
|
149 | (6) |
|
10.4.1 The First and Second Fundamental Theorems of Classical Invariant Theory (cf. [ 88]) for the action of GLn(K) |
|
|
150 | (5) |
|
|
155 | (8) |
|
11.1 Standard Monomial Theory for a General G/Q |
|
|
155 | (1) |
|
11.2 The Cohomology and Homology of the Flag Variety |
|
|
156 | (2) |
|
11.2.1 A Z-basis for H*(Fl(n)) |
|
|
156 | (1) |
|
11.2.2 A presentation for the Z-algebra H*(Fl(n)) |
|
|
156 | (1) |
|
11.2.3 The homology H*(Fl(n)) |
|
|
157 | (1) |
|
11.2.4 Schubert classes and Littlewood-Richardson coefficients |
|
|
157 | (1) |
|
|
158 | (1) |
|
11.4 Bott--Samelson Scheme of G |
|
|
158 | (1) |
|
|
159 | (1) |
|
11.6 Affine Schubert Varieties |
|
|
160 | (1) |
|
11.7 Affine Flag and Affine Grassmannian Varieties |
|
|
161 | (2) |
References |
|
163 | (4) |
List of Symbols |
|
167 | (2) |
Index |
|
169 | |