Atnaujinkite slapukų nuostatas

Gravitational Curvature: An Introduction to Einstein's Theory [Kietas viršelis]

  • Formatas: Hardback, 192 pages, aukštis x plotis x storis: 215x136x9 mm, weight: 203 g, Illustrations, unspecified
  • Serija: Dover Books on Physics
  • Išleidimo metai: 30-Sep-2011
  • Leidėjas: Dover Publications Inc.
  • ISBN-10: 0486481212
  • ISBN-13: 9780486481210
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 192 pages, aukštis x plotis x storis: 215x136x9 mm, weight: 203 g, Illustrations, unspecified
  • Serija: Dover Books on Physics
  • Išleidimo metai: 30-Sep-2011
  • Leidėjas: Dover Publications Inc.
  • ISBN-10: 0486481212
  • ISBN-13: 9780486481210
Kitos knygos pagal šią temą:
"Modern differential geometry is increasingly important to theoretical physics and has applications in relativity and cosmology. This classic text and reference monograph applies modern differential geometry to general relativity, substituting normal analytical computations on gravity with differential geometric arguments and derivations. Suitable for advanced mathematics students or mathematicians interested in physics. 1979 edition"--

Provided by publisher.

Classic text and reference monograph applies modern differential geometry to general relativity, substituting normal analytical computations on gravity with differential geometric arguments and derivations. Suitable for advanced mathematics students or mathematicians interested in physics. 1979 edition.


Modern differential geometry is increasingly important to theoretical physics and has applications in relativity and cosmology. This classic text and reference monograph applies modern differential geometry to general relativity, substituting normal analytical computations on gravity with differential geometric arguments and derivations. Suitable for advanced mathematics students or mathematicians interested in physics. 1979 edition.
Preface to the Dover Edition xi
Preface xiii
Notation xvii
1 Special Relativity
1(12)
The Lorentz Transformations as Viewed by Einstein
1(6)
Minkowski Space
7(4)
The Minkowski Norm
11(2)
2 Clocks and Gravitational Potential
13(14)
Gravitation, Acceleration, and the Principle of Equivalence
13(3)
The Pseudo-Riemannian Structure of Space-Time
16(4)
Gravitational Potential
20(5)
Is Gravitation Governed by a Single Potential?
25(2)
3 A Heuristic Derivation of Einstein's Equations
27(8)
Poisson's Equation
27(2)
The Density p
29(2)
Einstein's Equations
31(4)
4 The Geometry of Einstein's Equations
35(11)
Curvature in a Pseudo-Riemannian M4
35(4)
The Einstein Tensor Gij
39(2)
The Gauss Equations in M4
41(1)
A Geometric Form of Einstein's Equations
42(4)
5 The Schwarzschild Solution
46(10)
Schwarzschild Coordinates
46(1)
Embedding the Spatial Section
47(3)
The Gravitational Potential and g00
50(2)
The Schwarzschild Singularity
52(1)
Concluding Remarks
53(3)
6 The Classical Motion of a Continuum
56(15)
Lie Derivatives, Interior Products, and the Variation of Integrals
56(8)
The Cauchy Stress Tensor in Classical Mechanics
64(5)
The Stress-Energy-Momentum Tensor
69(2)
7 The Relativistic Equations of Motion
71(19)
Fermi Transport and the Relative Velocity Vector
71(3)
Vorticity, Strain, and Expansion
74(4)
Shear and the Stress Tensor for a Viscous Fluid
78(2)
Divergence of the Einstein Tensor: Gravitational "Force"
80(2)
The Equations of Motion
82(3)
Geodesics and Constants of Motion
85(3)
Tidal Forces
88(2)
8 Light Rays and Fermat's Principle
90(9)
Fermat's Principle of Stationary Time
90(3)
Geodesics in Conformally Related Metrics
93(2)
The Deflection of Light
95(4)
9 Electromagnetism in Three-Space and Minkowski Space
99(16)
Twisted Forms and the Vector Product
99(1)
E, B, and the (Heaviside-) Lorentz Force in Three-Space
100(2)
Electromagnetism in Minkowski Space
102(1)
Integration of Twisted Forms
103(2)
The Charge-Current Three-Form in Minkowski Space
105(1)
The Hodge *-Operator
106(2)
The Laws of Gauss and Ampere-Maxwell
108(4)
Faraday's Law and the Absence of Magnetic Monopoles
112(3)
10 Electromagnetism in General Relativity
115(13)
Maxwell's Equations
115(3)
The Electromagnetic Stress-Energy-Momentum Tensor
118(3)
The Reissner Solution
121(3)
Conformal Invariance of Maxwell's Equations
124(1)
Poisson's Equation in a Static Universe
125(2)
Nonstatic Fields
127(1)
11 The Interior Solution
128(11)
Curvature of World Lines and Gravitational Force Potential
128(2)
The Schwarzschild Interior Solution
130(4)
The Oppenheimer-Volkoff Equation
134(5)
12 Cosmology
139(28)
The Einstein Static Universe
139(2)
The Friedmann Cosmology: Assumptions
141(3)
The Friedmann Cosmology: The Solution
144(5)
The (Landau-) Raychaudhuri Equation
149(3)
The Geometry of a Vorticity-Free Flow
152(1)
A Generalized Poisson Equation for Vorticity-Free Flows
152(3)
General Vorticity-Free Cosmologies: The Influence of Curvature on Expansion
155(2)
General Vorticity-Free Cosmologies: Singularities
157(2)
General Vorticity-Free Cosmologies: Closed Spatial Universes
159(8)
References 167(2)
Index 169