Atnaujinkite slapukų nuostatas

El. knyga: Gravitational Lenses

  • Formatas: PDF+DRM
  • Serija: Astronomy and Astrophysics Library
  • Išleidimo metai: 29-Jun-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662037584
  • Formatas: PDF+DRM
  • Serija: Astronomy and Astrophysics Library
  • Išleidimo metai: 29-Jun-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662037584

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Light observed from distant objects is found to be deflected by the gravitational field of massive objects near the line of sight - an effect predicted by Einstein in his first paper setting forth the general theory of relativity, and confirmed by Eddington soon afterwards. If the source of the light is sufficiently distant and bright, and if the intervening object is massive enough and near enough to the line of sight, the gravitational field acts like a lens, focusing the light and producing one or more bright images of the source. This book, by renowned researchers in the field, begins by discussing the basic physics behind gravitational lenses: the optics of curved space-time. It then derives the appropriate equations for predicting the properties of these lenses. In addition, it presents up-to-date observational evidence for gravitational lenses and describes the particular properties of the observed cases. The authors also discuss applications of the results to problems in cosmology.

This monograph describes comprehensively and in sufficient detail both the theory and observation of gravitational lensing, an effect that is of growing importance for astronomical observations and cosmological modelling. This book is the first monograph (outside the USSR) on this topic.

Daugiau informacijos

Springer Book Archives
Introduction
1(25)
Historical remarks
1(10)
Before 1919
1(2)
The period 1919--1937
3(3)
The period 1963--1979
6(3)
Post-1979
9(2)
Outline of the book
11(10)
Remarks about notation
21(4)
Basic facts and the observational situation
25(66)
The Schwarzschild lens
25(4)
The general lens
29(4)
The magnification factor
33(8)
Observing gravitational lens systems
41(6)
Expectations for point sources
42(4)
Expectations for extended sources
46(1)
Known gravitational lens systems
47(44)
Doubles
48(12)
Triples
60(4)
Quadruples
64(7)
Additional candidates
71(1)
Arcs
72(5)
Rings
77(7)
A rapidly growing list of candidates
84(1)
Speculations on other gravitational lens systems
84(5)
Gravitational lenses and cosmology
89(2)
Optics in curved spacetime
91(28)
The vacuum Maxwell equations
91(2)
Locally approximately plane waves
93(7)
Fermat's principle
100(4)
Geometry of ray bundles
104(6)
Ray systems and their connection vectors
104(2)
Optical scalars and their transport equations
106(4)
Distances based on light rays. Caustics
110(5)
Luminosity, flux and intensity
115(4)
Derivation of the lens equation
119(38)
Einstein's gravitational field equation
119(2)
Approximate metrics of isolated, slowly moving, non-compact matter distributions
121(2)
Light deflection by quasistationary, isolated mass distributions
123(4)
Summary of Friedmann-Lemaitre cosmological models
127(5)
Light propagation and redshift-distance relations in homogeneous and inhomogeneous model universes
132(11)
Flux conservation and the focusing theorem
132(2)
Redshift--distance relations
134(3)
The Dyer--Roeder equation
137(6)
The lens mapping in cosmology
143(7)
Wave optics in lens theory
150(7)
Properties of the lens mapping
157(26)
Basic equations of the lens theory
157(4)
Magnification and critical curves
161(5)
Time delay and Fermat's principle
166(6)
Two general theorems about gravitational lensing
172(5)
The case of a single lens plane
172(4)
Generalizations
176(1)
Necessary and sufficient conditions for multiple imaging
177(1)
The topography of time delay (Fermat) surfaces
177(6)
Lensing near critical points
183(34)
The lens mapping near ordinary images
184(1)
Stable singularities of lens mappings
185(13)
Folds. Rules for truncating Taylor expansions
186(6)
Cusps
192(5)
Whitney's theorem. Singularities of generic lens maps
197(1)
Stable singularities of one-parameter families of lens mappings; metamorphoses
198(17)
Umbilics
199(4)
Swallowtails
203(4)
Lips and beak-to-beaks
207(4)
Concluding remarks about singularities
211(4)
Magnification of extended sources near folds
215(2)
Wave optics in gravitational lensing
217(12)
Preliminaries; magnification of ordinary images
217(3)
Magnification near isolated caustic points
220(2)
Magnification near fold catastrophes
222(7)
Simple lens models
229(52)
Axially symmetric lenses
230(19)
General properties
230(9)
The Schwarzschild lens
239(1)
Disks as lenses
240(3)
The singular isothermal sphere
243(1)
A family of lens models for galaxies
244(3)
A uniform ring
247(2)
Lenses with perturbed symmetry (Quadrupole lenses)
249(12)
The perturbed Plummer model
252(3)
The perturbed Schwarzschild lens (`Chang-Refsdal lens')
255(6)
The two point-mass lens
261(5)
Two equal point masses
261(3)
Two point masses with arbitrary mass ratio
264(1)
Two point masses with external shear
264(1)
Generalization to N point masses
265(1)
Lenses with elliptical symmetry
266(8)
Elliptical isodensity curves
267(1)
Elliptical isopotentials
268(3)
A practical approach to (nearly) elliptical lenses
271(3)
Marginal lenses
274(3)
Generic properties of ``elliptical lenses''
277(4)
Evolution of the caustic structure
277(1)
Imaging properties
278(3)
Multiple light deflection
281(14)
The multiple lens-plane theory
282(6)
The lens equation
282(3)
The magnification matrix
285(2)
Particular cases
287(1)
Time delay and Fermat's principle
288(3)
The generalized quadrupole lens
291(4)
Numerical methods
295(14)
Roots of one-dimensional equations
296(2)
Images of extended sources
298(1)
Interactive methods for model fitting
299(1)
Grid search methods
300(2)
Transport of images
302(1)
Ray shooting
303(4)
Constructing lens and source models from resolved images
307(2)
Statistical gravitational lensing: General considerations
309(62)
Cross-sections
310(10)
Multiple image cross-sections
311(2)
Magnification cross-sections
313(7)
The random star field
320(24)
Probability distribution for the deflection
322(6)
Shear and magnification
328(2)
Inclusion of external shear and smooth matter density
330(4)
Correlated deflection probability
334(3)
Spatial distribution of magnifications
337(7)
Probabilities in a clumpy universe
344(4)
Light propagation in inhomogeneous universes
348(18)
Statistics for light rays
350(14)
Statistics over sources
364(2)
Maximum probabilities
366(5)
Statistical gravitational lensing: Applications
371(96)
Amplification bias and the luminosity function of QSOs
373(7)
Amplification bias: Preliminary discussion
373(5)
QSO source counts and their luminosity function
378(2)
Statistics of multiply imaged sources
380(24)
Statistics for point-mass lenses
381(4)
Statistics for isothermal spheres
385(10)
Modifications of the lens model: Symmetric lenses
395(4)
Modification of the lens model: Asymmetric lenses
399(2)
Lens surveys
401(3)
QSO--galaxy associations
404(15)
Observational challenges
404(3)
Mathematical formulation of the lensing problem
407(1)
Maximal overdensity
408(3)
Lens models
411(4)
Relation to observations
415(4)
Microlensing: Astrophysical discussion
419(16)
Lens-induced variability
421(4)
Microlensing in 2237 + 0305
425(4)
Microlensing and broad emission lines of QSOs
429(4)
Microlensing and the classification of AGNs
433(2)
The amplification bias: Detailed discussion
435(13)
Theoretical analysis
435(9)
Observational hints of amplification bias
444(3)
QSO--galaxy associations revisited
447(1)
Distortion of images
448(5)
Lensing of supernovae
453(3)
Further applications of statistical lensing
456(11)
Gravitational microlensing by the galactic halo
456(4)
Recurrence of γ-ray bursters
460(1)
Multiple imaging from an ensemble of galaxies, and the `missing lens' problem
461(6)
Gravitational lenses as astrophysical tools
467(50)
Estimation of model parameters
468(15)
Invariance transformations
471(2)
Determination of lens mass and Hubble constant
473(3)
Application to the 0957 + 561 system
476(7)
Arcs in clusters of galaxies
483(18)
Introduction
483(2)
The nearly spherical lens
485(7)
Analysis of the observations; arcs as astronomical tools
492(6)
Statistics of arcs and arclets
498(3)
Additional applications
501(12)
The size of QSO absorption line systems
501(3)
Scanning of the source by caustics
504(4)
The parallax effect
508(1)
Cosmic strings
509(2)
Upper limits to the mass of some QSOs
511(1)
Gravitational lensing and superluminal motion
512(1)
Miscellaneous topics
513(4)
Lensing and the microwave background
513(1)
Light deflection in the Solar System
514(1)
Light deflection in strong fields
514(3)
References 517(28)
Index of Individual Objects 545(2)
Subject Index 547