Atnaujinkite slapukų nuostatas

Great North American Stage Directors Set 1: Volumes 1-4: Establishing Directorial Terrains, pre-1970 [Multiple-component retail product]

Edited by (Muhlenberg College, USA)
  • Formatas: Multiple-component retail product, aukštis x plotis x storis: 226x146x76 mm, weight: 1780 g, 36 bw illus, Contains 4 hardbacks
  • Serija: Great Stage Directors
  • Išleidimo metai: 28-Jan-2021
  • Leidėjas: Methuen Drama
  • ISBN-10: 1350045691
  • ISBN-13: 9781350045699
Kitos knygos pagal šią temą:
  • Formatas: Multiple-component retail product, aukštis x plotis x storis: 226x146x76 mm, weight: 1780 g, 36 bw illus, Contains 4 hardbacks
  • Serija: Great Stage Directors
  • Išleidimo metai: 28-Jan-2021
  • Leidėjas: Methuen Drama
  • ISBN-10: 1350045691
  • ISBN-13: 9781350045699
Kitos knygos pagal šią temą:
"Each volume provides substantial treatment of three major directors, with each director considered by two specialists, combining analysis of the director's practical craft with accounts of the historical, cultural and theoretical context of their practice. Links between the featured directors and other artists and directors from the period are traced to round out the picture of influences and artistic development."--

The definitive account of the work, lineage and legacy of the most important North American stage directors prior to 1970.

The Great North American Stage Directors: Set 1 offers an authoritative account of the work, lineage and legacy of the major theatre directors prior to 1970, where the role of the director is seen primarily as interpreter. Across the four volumes it provides a uniquely rich study of the genealogy and development of a practice through focus on individual directors and the wider context and artform in which they worked. For professional practitioners and those developing their skills, as well as those engaged in the analysis of theatre practices, forms and history, it will prove an essential resource.

Each volume provides substantial treatment of three major directors, with each director considered by two specialists, combining analysis of the director’s practical craft with accounts of the historical, cultural and theoretical context of their practice. Links between the featured directors and other artists and directors from the period are traced to round out the picture of influences and artistic development.

Volume 1: David Belasco, Arthur Hopkins, Margaret Webster: Broadway Luminaries (edited by Cheryl Black, University of Missouri, USA)

Volume 2: Harold Clurman, Orson Welles, Margo Jones: The Director in the Company (edited by Jonathan Chambers, Bowling Green State University, USA)

Volume 3: Elia Kazan, Jerome Robbins, Lloyd Richards: Urban Spaces, Poetic Realisms (edited by Harvey Young, Boston University, USA)

Volume 4: George Abbott, Vinnette Carroll, Harold Prince: Musical Theatre Innovators (edited by Henry Bial, University of Kansas, USA, and Chase Bringardner, Auburn University, USA)

Featuring 64 illustrations, the eight volumes from Sets 1 and 2 of The Great North American Stage Directors series combine to present the most authoritative survey available on North American theatre directors.

Recenzijos

Provides a valuable in-depth look into the development of a stage directors work and how their efforts affected the development of the performative arts. * CHOICE *

Daugiau informacijos

The definitive account of the work, lineage and legacy of the most important North American stage directors prior to 1970.
VOLUME 1 The Great North American Stage Directors
List of Figures
vii
Series Introduction James Peck viii
Acknowledgments x
Introduction: Forerunners and Groundbreakers in the Art of Theatrical Directing Cheryl Black 1(1)
David Belasco
1 The Belasco Brand: Directing the Modern Theatrical Experience
23(36)
Christin Essin
2 The Cultural Imaginings of a Theatrical Impresario: David Belasco in Context
59(42)
Cheryl Black
Arthur Hopkins
3 Arthur Hopkins's First Act: Before the Crash (1913-29)
101(40)
Arthur Feinsod
4 Arthur Hopkins's Second Act: After the Crash (1928-48)
141(24)
Ronald Wainscott
Margaret Webster
5 "She Must Be Fierce": Margaret Webster's Groundbreaking Broadway Career
165(39)
Wendy Vierow
6 Not the Moor, but the Figure of the Moor: A Case Study of the Racial, Political, and Personal Stakes of Margaret Webster's Othello (1943) and The Tempest (1945)
204(39)
Lisa Jackson-Schebetta
Notes on Contributors 243(2)
Index 245
VOLUME 2 The Great North American Stage Directors
List of Figures
vii
Series Introduction James Peck viii
Introduction: The Director in the Company and the Value of Crisis Jonathan Chambers 1(1)
Harold Clurman
1 Harold Clurman, the Group, and the Legacy of a Director
15(26)
Richard Jones
2 Cultural Messiah: Harold Clurman and the Early Years of the Group Theatre
41(22)
Fonzie D. Geary
3 Something More Than the "Naked Facts": Clurman and Odets's Messy Idealism
63(24)
Christopher Herr
Orson Welles
4 Orson Welles, Project 891, and the Mercury Theatre: A Consideration of Welles as the Director of a Company
87(23)
Matthew Gretzinger
5 Recovering History and Supernatural Politics: Orson Welles's Creative Collaborations in the Federal Theatre Project's "Voodoo Macbeth"
110(26)
Elizabeth A. Osborne
6 Caesar: A Production for Its Time and Beyond
136(31)
Anne Fletcher
Margo Jones
7 Margo Jones and the Rhetoric of Company-Making
167(24)
Boone J. Hopkins
8 Margo Jones and Alma Winemiller: A Director and Her Doppelganger
191(23)
Chrystyna Dail
9 On a Double-Dog Dare: Margo Jones's Production of Inherit the Wind
214(24)
Jennifer Jones Cavenaugh
Notes on Contributors 238(3)
Index 241
VOLUME 3 The Great North American Stage Directors
List of Figures
vii
Series Introduction James Peck ix
Acknowledgments xii
Introduction: Living the American Dream 1(1)
Harvey Young
Elia Kazan
1 Gadget Makes American Theatre
13(42)
Harvey Young
Jerome Robbins
2 Choreography as Directing: On Jerome Robbins
55(23)
Julia L. Foulkes
3 Jerome Robbins: A Hide-and-Seek Directorial Life
78(37)
Stuart J. Hecht
Lloyd Richards
4 Lloyd Richards in the Classroom
115(24)
Cfrancis Blackchild
5 The Performative Tradition of Lloyd Richards
139(39)
Everett C. Dixon
6 Mentoring August: Lloyd Richards and August Wilson
178(30)
Sandra G. Shannon
Notes on Contributors 208(2)
Index 210(3)
VOLUME 4 The Great North American Stage Directors
List of Figures
ix
Series Introduction James Peck x
Acknowledgments xiii
Introduction 1(1)
Henry Bial
Chase Bringardner
George Abbott
1 Speedy Entertainment: How the Abbott Touch Shaped the Mid-Century Musical
15(19)
Alisa Roost
2 The Abbott Legacy
34(20)
Bud Coleman
3 The Critic's Darling
54(21)
Henry Bial
Vinnette Carroll
4 The Remaining One-Third: Vinnette Carroll and the Urban Arts Corps
75(23)
La Donna L. Forsgren
5 An Architect of Feeling: Vinnette Carroll and Her Broadway Gospel Musicals
98(21)
Brian Granger
6 Vinnette Carroll, Langston Hughes, and the Creation of the Gospel Song-Play
119(30)
Hillary Miller
Harold Prince
7 Hal Prince Assumes Direction of a Genre
149(21)
Paul R. Laird
8 "A Show Every Year Like Clockwork": Harold Prince's Illustrious Career As a Revolutionary Musical Theatre Director and Creative Producer
170(21)
Barbara Wallace Grossman
9 Producing Phantoms: Hal Prince and the Mega in the Mega-Musical
191(22)
Chase Bringardner
Notes on Contributors 213(5)
Index 218
Volume 1
About the Editors vii
List of Contributors
xxvii
Section I Introduction
1(48)
1 The Role of Batteries for the Successful Transition to Renewable Energy Sources
3(10)
Dominic Bresser
Arianna Moretti
Alberto Varzi
Stefano Passerini
1 The Need for Transitioning to Renewable Energy Sources
3(2)
2 Energy Storage as Key Enabler
5(4)
2.1 Stationary Energy Storage
5(2)
2.2 Energy Storage Technologies for Transportation
7(1)
2.3 Storage Technologies for Portable Electronic Devices
8(1)
3 The Variety of Battery Chemistries and Technologies
9(4)
References
10(3)
2 Fundamental Principles of Battery Electrochemistry
13(36)
Francesco Nobili
Roberto Marassi
1 Introduction
13(3)
2 Main Battery Components
16(3)
2.1 Electrodes
16(1)
2.2 Electrolyte
17(2)
3 Voltage, Capacity, and Energy
19(10)
3.1 Theoretical Cell Voltage
19(4)
3.2 Theoretical Capacity
23(3)
3.3 Energy Storage and Delivery
26(3)
4 Current and Power
29(6)
4.1 Kinetics and Over voltage
29(2)
4.2 Ohmic Polarization
31(1)
4.3 Kinetic Polarization
31(1)
4.4 Mass Transfer Polarization
32(3)
5 Practical Operating Parameters
35(2)
5.1 Coulombic Efficiency and Energy Efficiency (Round-Trip Efficiency)
35(1)
5.2 Capacity Retention and Cycle Life
36(1)
5.3 Rate Capability
37(1)
6 Main Classes of Batteries and Alternative Electrochemical Power Sources
37(12)
6.1 Primary Batteries
38(1)
6.1.1 Volta's Pile
39(1)
6.1.2 Daniell Cell
39(1)
6.1.3 Leclanche" Cell
39(1)
6.1.4 Alkaline Batteries
40(1)
6.1.5 Li Primary Batteries
40(1)
6.2 Secondary Batteries (Accumulators)
41(1)
6.2.1 Lead-Acid Batteries
42(1)
6.2.2 Nickel-Cadmium Batteries
42(1)
6.2.3 Ni-Metal-Hydride Batteries
42(1)
6.2.4 Lithium-Ion Batteries
43(1)
6.2.5 Redox Flow Batteries
44(1)
6.3 Fuel Cells
44(1)
6.3.1 Alkaline Fuel Cells (AFCs)
45(1)
6.3.2 Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
45(1)
6.3.3 Direct Methanol Fuel Cells (DMFCs)
45(1)
6.3.4 Phosphoric Acid Fuel Cells (PAFCs)
46(1)
6.3.5 Molten Carbonate Fuel Cells (MCFCs)
46(1)
6.3.6 Solid Oxide Fuel Cells (SOFCs)
46(1)
References
47(2)
Section II Presently Employed Battery Technologies
49(408)
3 Lead-Acid - Still the Battery Technology with the Largest Sales
52(43)
Johannes Buengeler
Bernhard Riegel
1 Introduction and History
51(1)
2 Fundamentals of the Lead-Acid Accumulator
52(10)
2.1 Operating Principle
52(2)
2.2 Electrode Potentials in Equilibrium
54(1)
2.2.1 Thermodynamic Fundamentals
54(1)
2.2.2 Equilibrium Potential of the Main Reaction
55(2)
2.2.3 Single-Electrode Potentials
57(1)
2.2.4 Important Reference Electrodes
58(1)
2.3 Side Reactions
59(1)
2.3.1 Negative Electrode
60(1)
2.3.1.1 Hydrogen Evolution
60(1)
2.3.1.2 Oxygen Reduction
60(1)
2.3.2 Positive Electrode
61(1)
2.3.2.1 Oxygen Evolution
61(1)
2.3.2.2 Grid Corrosion
61(1)
2.3.3 Oxidation of Organic Substances
62(1)
3 Behavior of the Lead-Acid Accumulator During Current Flow
62(5)
3.1 Overpotentials in Lead-Acid Accumulators
63(1)
3.2 Mathematic Concept to Describe the Electron Transfer Reaction
63(1)
3.3 Inhibition of the Electron Transfer Reaction During Charge
64(1)
3.4 Current/Voltage Characteristics During Overcharge
65(2)
4 Aging Mechanisms
67(6)
4.1 Sulfation of Negative Active Mass
69(4)
5 Acid Stratification
73(3)
6 Battery Design
76(4)
6.1 Types of Electrodes
77(1)
6.2 Valve-Regulated Lead-Acid Batteries
78(2)
7 Discharge Characteristic
80(2)
8 Charging Algorithms
82(4)
8.1 IUIa Charging Algorithms
83(3)
9 Temperature Effects
86(3)
9.1 Theoretical Description of the Heat Sources and Sinks
86(3)
10 New Development Trends for Advanced Lead-Acid Batteries
89(6)
10.1 Thin Plate Pure Lead Technology
89(1)
10.2 Enhanced Lead-Carbon Batteries
90(1)
10.3 Bipolar Lead-Acid Batteries
91(1)
References
91(4)
4 Ni/Cd and Ni-MH - The Transition to "Charge Carrier"-Based Batteries
95(36)
Hui Wang
Min Zhu
1 Introduction to Ni/Cd and Ni-MH Batteries
95(2)
2 Basic Structure of Ni-MH Battery
97(1)
3 Electrochemistry of Ni-MH Battery
98(2)
4 Positive Electrode Materials of Ni-MH Batteries
100(4)
4.1 Crystal Structure
102(1)
4.2 Electrochemical Characteristics
103(1)
5 Negative Electrode Materials of Ni-MH Batteries
104(12)
5.1 Electrochemical Reaction Thermodynamics of Hydrogen Storage Electrode Alloys
105(1)
5.2 Electrochemical Reaction Kinetics of Hydrogen Storage Alloys
106(2)
5.3 Requirements for Hydrogen Storage Electrode Alloys
108(2)
5.4 Classification of Hydrogen Storage Electrode Alloys
110(1)
5.4.1 AB5-Type Alloys
110(3)
5.4.2 AB2-Type Laves Alloys
113(1)
5.4.3 A2B7-Typeand AB3-Type Superlattice Alloys
114(2)
6 State-of-the-Art of Ni-MH Battery
116(109)
6.1 High Power Ni-MH Battery
117(1)
6.2 High-Capacity Ni-MH Battery
118(5)
6.3 High-/Low-Temperature Ni-MH Battery
123(1)
6.4 Low Self-Discharge Ni-MH Battery
124(1)
7 Summary
125(1)
References
126(5)
5 Brief Survey on the Historical Development of LIBs
131(18)
Kazunori Ozawa
1 Introduction
131(1)
2 Aqueous Electrolyte System
131(1)
3 Nonaqueous Electrolyte System
132(3)
4 Insertion/Extraction of Lithium Ion
135(1)
5 Success of Sony
135(12)
5.1 Patent Issue
136(1)
5.2 Cathode Material
136(1)
5.3 Anode Material
136(2)
5.4 Electrolyte
138(3)
5.5 Separator
141(1)
5.6 Cathode Collector and Conductive Material
141(1)
5.7 Anode Collector
142(1)
5.8 Anode Can
142(1)
5.9 Mixing and Coating Technology
142(1)
5.10 Assembly of Lithium-Ion Cells
143(1)
5.11 Pack
144(3)
6 Conclusion
147(2)
References
147(2)
6 Present LIB Chemistries
149(36)
1 General Introduction
149(1)
Zempachi Ogumi
2 Positive Electrodes
150(1)
Hajime Arai
2.1 Basic Principles
150(2)
2.2 LiCoO2 Family
153(2)
2.3 LiNiO2 Family
155(1)
2.4 LiMn2O4 Family
156(2)
2.5 LiFePO4 Family
158(1)
3 Negative Electrodes
159(1)
Takeshi Abe
3.1 Commercialized Carbons in LIBs
159(3)
3.2 Graphitized Carbons
162(1)
3.3 Nongraphitic Carbons
162(2)
3.4 Hard Carbons (Nongraphitizable Carbons)
164(1)
3.5 High-Potential Negative Electrode
164(1)
3.6 Silicon-Based Materials
165(2)
4 Electrolytes
167(1)
Masayuki Morita
4.1 Introduction - General Concept of Electrolyte Designing in Practical LIBs
167(1)
4.2 Classification of LIB Electrolytes
168(2)
4.3 Organic Solvent Electrolytes
170(3)
4.4 Polymeric Solid and Gel Electrolytes
173(1)
4.5 Inorganic Solid Electrolytes
174(2)
4.6 Ionic Liquid-Based Electrolytes
176(1)
4.7 New Trends
177(2)
References
179(6)
7 Anticipated Progress in the Near- to Mid-Term Future of LIBs
185(1)
Seung-Taek Myung
Jongsoon Kim
Yang-Kook Sun
1 Cathode
185(1)
1.1 Summary
185(1)
1.2 Layered Structure
186(2)
1.3 Spinel Structure
188(1)
1.4 Olivine Structure
188(1)
1.5 Performance Improvements
189(3)
2 Anode
192(1)
2.1 Summary
192(1)
2.2 Lithium Metal
192(1)
2.3 Intercalation-Based Anode
193(1)
2.3.1 Graphite-Based Materials
193(1)
2.3.2 Spinel Li4Ti5O12
194(1)
2.3.3 TiO2
195(1)
2.4 Alloying-Based Anode
196(1)
2.4.1 Silicon
196(1)
2.4.2 Other Metal Elements: Tin, Lead, Antimony, and Bismuth
197(1)
2.5 Conversion-Based Anode
298(1)
2.5.1 Metal Oxide
198(1)
2.5.2 Metal Sulfides
199(1)
3 Electrolyte
199(1)
3.1 Summary
199(1)
3.2 Organic Liquid Electrolyte
200(1)
3.2.1 Organic Solvent
201(1)
3.2.2 Lithium Salt
202(1)
3.2.3 Additives
202(1)
3.2.4 Ionic Liquids
202(1)
3.3 Gel Polymer Electrolyte
203(1)
4 Separator
204(2)
4.1 Summary
204(1)
4.2 Detailed Requirements of Separator
204(1)
4.3 Polyolefin Separators
205(1)
4.4 PVdF Separators
206(1)
4.5 Inorganic Composite Separators
206(1)
5 Oudook
206(11)
References
207(10)
8 Safety Considerations with Lithium-Ion Batteries
217(26)
Jurgen Garche
Klaus Brandt
1 Introduction
217(1)
2 Material Influence on Risks
218(6)
2.1 Cathode Materials
218(4)
2.2 Anode Materials
222(1)
2.3 Electrolytes
223(1)
3 Risk Classes
224(4)
3.1 Chemical Risks
224(1)
3.2 Thermal Risks
224(3)
3.3 Kinetical Risks
227(1)
3.4 Electrical Risks
227(1)
4 Triggering of Risks
228(6)
4.1 Triggers External to the Cell
228(2)
4.2 Internal Cell Triggers
230(1)
4.3 Propagation of Cell Failures
231(1)
4.4 Safety Testing
232(2)
5 Handling of Risk Events
234(4)
5.1 General Considerations
234(2)
5.2 Fire Extinction
236(1)
5.3 Fire-Extinguishing Agents
237(1)
6 Summary and Oudook
238(5)
References
239(4)
9 Recycling of Lithium-Ion Batteries
243(34)
Marit Mohr
Marcel Weil
Jens Peters
Zhangqi Wang
1 Introduction
243(3)
2 Recycling Technologies/Processes
246(13)
2.1 Thermal Pretreatment
247(1)
2.2 Mechanical Treatment
247(1)
2.2.1 Crushing
247(1)
2.2.2 Separation
248(1)
2.3 Pyrometallurgical Treatment
248(1)
2.4 Hydrometallurgical Treatment
249(1)
2.5 Direct Recycling
249(1)
2.6 Current Recycling Activities in Europe
250(1)
2.6.1 Accurec
250(2)
2.6.2 Duesenfeld
252(1)
2.6.3 Umicore
252(2)
2.6.4 ERLOS: Separate Washing of Anode and Cathode Foils
254(2)
2.6.5 Laboratory- and Pilot-Scale Processes
256(1)
2.6.5.1 Supercritical CO2 for Electrolyte Extraction
256(1)
2.6.5.2 Froth Flotation for Separating Active Material
256(1)
2.6.6 Electrohydraulic Fragmentation
257(2)
3 Assessment of Battery Recycling Processes
259(6)
3.1 Techno-Economic Performance of the Different Recycling Processes
259(4)
3.2 Environmental Performance of the Different Recycling Processes
263(2)
4 Challenges and Potentials
265(5)
4.1 Technological Challenges
265(1)
4.1.1 Safety and Design for Recycling
265(1)
4.1.2 Electrolyte
266(1)
4.1.3 Variety of Materials and Mixed Battery Waste Streams
266(1)
4.1.4 Battery Collection
267(1)
4.2 Economic Viability
267(1)
4.2.1 Value of Recycling Products
267(1)
4.2.2 Temporal Mismatch of Recycling Products
268(1)
4.2.3 Increasing Raw Material Prices
269(1)
4.3 Environmental Considerations
269(1)
4.3.1 Recycling Depth
269(1)
4.3.2 Legislation and Enforcement
269(1)
4.3.3 Limits
270(1)
4.4 Further Aspects
270(1)
5 Conclusion
270(7)
References
272(5)
10 Vanadium Redox Flow Batteries
277(34)
Ruiyong Chen
Zhifeng Huang
Rolf Hempelmann
Dirk Henkensmeier
Sangwon Kim
1 Introduction
277(2)
2 Vanadium Electrolytes
279(9)
2.1 Synthesis of Vanadium Electrolytes
279(1)
2.2 Concentration and Chemical Stability of Vanadium Electrolytes
280(3)
2.3 Ionic Conductivity and Viscosity of Electrolyte
283(1)
2.4 Mixed-Acid Vanadium Electrolytes
283(2)
2.5 Additives for Vanadium Electrolytes
285(2)
2.6 State-of-Charge (SOC)
287(1)
3 Membranes and Transport of Species
288(8)
3.1 Function of the Membranes
288(1)
3.2 Characterization Methods of Membranes
289(1)
3.2.1 Swelling Behavior and Acid Absorption
289(1)
3.2.2 Permeability and Crossover
290(1)
3.2.3 Conductivity and Resistance
291(1)
3.2.4 Chemical Stability of Membranes
292(1)
3.3 Membrane Types
293(3)
4 Electrode Materials
296(5)
4.1 Electrode Reactions
296(1)
4.2 Carbon Paper Electrodes and "Zero-Gap" Concept of Cell Configuration
297(3)
4.3 Degradation Study of Carbon Electrodes
300(1)
5 Conclusions
301(10)
References
301(10)
11 Redox Flow - Zn-Br
311(38)
Hee-Tak Kim
Ju-Hyuk Lee
Dae Sik Kim
Jung Hoon Yang
1 Overview of Zn-Br Batteries
311(4)
2 Battery Components
315(15)
2.1 Membrane
315(2)
2.2 Electrolyte
317(1)
2.2.1 Formation of ZnBr2n-n Complexes
317(3)
2.2.2 Complexation Reactions of Polybromide Anions
320(1)
2.2.3 Bromine Sequestration Agents
320(3)
2.2.4 Electrolyte Additive for the Negative Electrolyte
323(1)
2.3 Positive Electrode
324(1)
2.3.1 Electrochemistry of Br0/Br2 Redox Reaction in Positive Electrode
324(1)
2.3.2 Charge Transfer Reaction
324(1)
2.3.3 Electrode Developments
325(3)
2.4 Negative Electrode
328(1)
2.4.1 Electrochemistry of Zn0/Zn2+Redox Reaction
328(1)
2.4.2 Kinetics of Zn Electrodeposition
328(2)
2 A3 Structures of Zn Deposit
330(4)
2.4.4 Electrode Development
332(2)
3 Battery Design
334(4)
3.1 Stack Design
334(2)
3.2 Module and System Design
336(2)
4 Battery Management
338(2)
4.1 Operation Mode
338(1)
4.2 Heat and pH Management
339(1)
5 Summary
340(9)
References
340(9)
12 The Sodium/Nickel Chloride Battery
349(22)
Marco Ottaviani
Alberto Turconi
Diego Basso
1 General Characteristics
349(1)
2 Description of the Electrochemical Systems
350(3)
2.1 Main Electrochemical Reactions
350(2)
2.2 Overcharge
352(1)
2.3 Overdischarge
352(1)
3 Cell Design and Performance Characteristics
353(7)
3.1 Solid Electrolyte Description
354(1)
3.2 Performance Characteristics
355(3)
3.3 Discharge at Different Rates
358(1)
3.4 Open Circuit Voltage
358(1)
3.5 Peak Pulse Power Test
358(2)
4 Battery Design and Performance Characteristics
360(4)
4.1 TL Series
361(1)
4.2 Safety
361(3)
5 Series Production Technology
364(1)
6 Market Overview and Application
365(1)
7 Transport of Cells and Batteries
366(5)
7.1 Packaging
367(1)
7.2 Training
367(1)
7.3 Marking
367(1)
7.4 Labeling
367(2)
7.4.1 Transport Document
369(1)
References
369(2)
13 High-Temperature Battery Technologies: Na-S
371(36)
Veronica Palomares
Karina B. Hueso
Michel Armand
Teofilo Rojo
1 Introduction
371(2)
2 High-Temperature Sodium-Sulfur Systems
373(13)
2.1 Basics of Sodium-Sulfur Batteries
373(3)
2.2 Advantages of Sodium-Sulfur Batteries
376(1)
2.3 Challenges to Overcome
377(1)
2.4 Solid Electrolytes: Alternatives
378(8)
3 Intermediate-Temperature Sodium-Sulfur Systems
386(1)
4 Low-Temperature Sodium-Sulfur Systems
387(6)
5 Sodium-Sulfur Technology Implementation in Industry
393(3)
6 Conclusions
396(11)
Acknowledgments
396(1)
References
396(11)
14 Solid-State Batteries with Polymer Electrolytes
407(50)
Cristina Iojoiu
Elie Paillard
1 Introduction
407(3)
2 Lithium-Ion Batteries and "Soft" Gel Electrolytes
410(2)
3 Lithium Metal Batteries and SPEs
412(12)
3.1 State of the art
412(2)
3.2 The Lithium Metal Anode
414(3)
3.3 Approaches Developed
417(1)
3.3.1 Plasticized SPEs
418(1)
3.3.2 Modification of PEO by Physical Interactions
419(3)
3.3.3 Chemical Modification of PEO
422(2)
4 Perspectives
424(12)
4.1 Polycarbonate Solid Polymer Electrolytes
426(1)
4.2 Hybrid Solid-State Polymer Electrolytes
427(1)
4.2.1 "Polymer-In-Ceramics" and Layered Electrolytes
427(1)
4.2.2 Ionogels
428(1)
4.3 Block Copolymers
428(2)
4.4 Liquid Crystal Electrolytes
430(2)
4.5 Oligomeric Anions, Polyanions, and Single-Ion Conductors
432(4)
5 Conclusions
436(21)
References
436(21)
Volume 2
About the Editors vii
List of Contributors
xxvii
Section III Potential Candidates for the Future Energy Storage
457(400)
15 Solid-State Batteries with Inorganic Electrolytes
459(62)
Naoki Suzuki
Taku Watanabe
Satoshi Fujiki
Yuichi Aihara
1 Introduction
459(11)
1.1 Research Background
459(2)
1.2 Energy Density and Safety Issue of Li Batteries
461(1)
1.3 Differences between Solid and Liquid Electrolyte Batteries
462(1)
1.4 Theoretical Models
463(3)
1.5 Li Metal and Li Ion Secondary Batteries
466(1)
1.6 Solid Electrolytes: Their Stability, Issues, and Approaches
466(3)
1.7 Hybrid Solid-State Batteries
469(1)
2 AU-Solid-State Li Primary Batteries
470(2)
3 All-Solid-State Secondary Battery
472(36)
3.1 Oxide-Based ASSB
472(3)
3.1.1 Micro-Batteries Based on Oxide
475(1)
3.1.2 Thin-Film Batteries Based on LiPON Family
475(3)
3.2 Sulfide-Based ASSB
478(2)
3.2.1 Hidden Grain-Boundary Resistance
480(1)
3.2.2 Thio-Phosphate (LPS) Family
480(3)
3.2.3 Li10GeP2S12 (LGPS)
483(3)
3.2.4 Argyrodite
486(1)
3.2.5 Transition Metal Oxide for Cathode in Sulfide-Based ASSB
486(4)
3.2.6 Sulfur Cathode for Sulfide-Based ASSB
490(4)
3.2.7 Anode Materials
494(2)
3.2.8 Pelletized Test Cells
496(1)
3.2.9 Process of Large-Size Cells
497(1)
3.2.9.1 Electrodes
497(3)
3.2.9.2 SE Layer
500(1)
3.2.9.3 Pressing
501(1)
3.2.10 Demonstration Cells
502(1)
3.3 Other SE Types
503(1)
3.3.1 Borohydride and Others
504(1)
3.3.2 Antiperovskite
505(1)
3.3.3 Search for New SEs Using Material Informatics
505(3)
4 Oudook
508(13)
4.1 Future Applications of ASSBs and Their Markets
508(1)
4.2 Challenge of ASSBs to xEV Battery Application
509(1)
4.2.1 Safety Issues on Sulfide-Based Cells
509(1)
4.2.2 Gap Between the Image and Present Status in Sulfide-Based Batteries
510(1)
4.2.3 Approaches to Fill the Gap in Sulfide-Based Batteries
510(1)
4.3 Prospect of Solid-State Batteries
510(1)
References
511(10)
16 Li/S
521(36)
Sheng-Heng Chung
Arumugam Manthiram
1 Introduction
521(7)
1.1 Principles of Lithium-Sulfur Batteries
522(3)
1.2 Historical Development
525(3)
2 Intrinsic Materials Issues
528(8)
2.1 Insulating Nature
528(2)
2.2 Polysulfides
530(2)
2.3 Volume Changes
532(1)
2.4 Lithium-Metal Anode
533(1)
2.5 Electrolyte
533(2)
2.6 Electrode Instability
535(1)
2.7 Summary of the Intrinsic Materials Issues
535(1)
3 Extrinsic Technical Issues
536(10)
3.1 Effective Capacity and Energy Density
537(1)
3.2 Amount of Sulfur
538(3)
3.3 Electrolyte/Sulfur Ratios
541(1)
3.4 Lithium Anode
542(1)
3.5 Cell-Testing Conditions
543(2)
3.6 Summary of the Extrinsic Technical Challenges
545(1)
4 Conclusion
546(11)
Acknowledgment
547(1)
References
547(10)
17 Lithium-Oxygen Batteries
557(42)
Yann K. Petit
Eiionore Mourad
Stefan A. Freunberger
1 Introduction
557(1)
2 Attainable Performance Metrics of Metal-O2 Cells
558(3)
3 Reaction Mechanism of the Li-O2 Cathode
561(7)
3.1 Li2O2 Formation on Discharge
561(2)
3.2 Oxidation Mechanism
563(3)
3.3 Li2O2 Conductivity
566(1)
3.4 Alternative Storage Media
567(1)
4 Parasitic Chemistry in Metal-O2 Cathodes
568(10)
4.1 Metrics Indicating Reversible Cell Operation
568(2)
4.2 Reactivity of Molecular and Reduced Oxygen
570(1)
4.3 Singlet Oxygen in Metal-O2 Cells
571(1)
4.3.1 Evidence for Singlet Oxygen as the Main Culprit for Parasitic Chemistry
571(2)
4.3.2 Pathways Toward Singlet Oxygen
573(3)
4.3.3 Quenching Singlet Oxygen
576(2)
5 The Electrodes
578(3)
5.1 The Cathode
578(1)
5.2 Cathode Catalysts
579(1)
5.3 The Anode
580(1)
6 Moving the Li-O2 Cathode Chemistry into Solution
581(1)
6.1 The Concept
581(1)
6.2 Reduction Mediators
581(1)
6.3 Oxidation Mediators
582(3)
7 Electrolytes and Their Stability
585(1)
8 Conclusions
586(2)
References
588(11)
18 Nonlithium Aprotic Metal/Oxygen Batteries Using Na, K, Mg, or Ca as Metal Anode
599(1)
Daniel Schroder
Jurgen Janek
Philipp Adelhelm
1 Introduction
599(1)
2 Basic Principles and Performance Metrics
600(5)
3 Redox Reactions in the Various Metal/Oxygen Batteries
605(1)
3.1 Na/O2 Batteries
605(1)
3.1.1 Thermodynamics and Kinetics
605(3)
3.1.2 History of Development, State-of-the-Art, and Current Trends
608(1)
3.1.2.1 Impact of the Carbon Material on the Cathode Reactions
609(1)
3.1.2.2 Impact of the Solvent on Cathode Reactions and Product Stability
610(1)
3.1.2.3 Impact of Water on the Cathode Reactions
610(1)
3.1.2.4 Electrolyte Degradation
610(1)
3.1.2.5 Current Trends on Cathode Materials and Electrolyte Additives
611(1)
3.1.2.6 Increasing the Oxygen Availability
611(1)
3.1.3 Unsolved Challenges
612(2)
3.2 K/O2 Batteries - Analogy from Na to K
614(1)
3.2.1 Major Discharge Product and Main Advantages
615(1)
3.2.2 State-of-the-Art and Challenges
615(1)
3.2.3 Use of Liquid Alloy Anodes
616(1)
3.3 Ca/O2 and Mg/O2 - The Challenging Transport of Multivalent Ions
616(1)
3.3.1 Working Principles
617(1)
3.3.2 Research Progress, State-of-the-Art, and Challenges
617(1)
3.3.2.1 Progress on Cathode Reactions for Ca
617(1)
3.3.2.2 Progress on Anode Reactions for Ca
618(1)
3.3.2.3 Progress on Cathode Reactions for Mg
618(1)
3.3.2.4 Progress on Anode Reactions for Mg
619(1)
3.3.2.5 Final Evaluation and Current Trends
619(1)
4 Summary and Prospects
619(10)
Acknowledgments
620(1)
References
621(6)
Further Reading
627(2)
19 Na-Ion Batteries
629(64)
Kei Kubota
Shinichi Komaba
1 Introduction
629(3)
2 Active Materials, Electrolyte, and Binders for a Negative Electrode
632(19)
2.1 Research Progress of Negative Electrode Materials
632(4)
2.2 Electrolyte Salts, Solvents, Additives, and Binders
636(9)
2.3 Hard Carbon Materials
645(2)
2.4 Titanium Phosphates and Oxides
647(1)
2.5 Alloy-Based Materials
648(3)
3 Positive Electrode Materials
651(20)
3.1 Research Progress of Positive Electrode
651(2)
3.2 Layered 3d Transition Metal Oxides
653(3)
3.3 O3-Type NaMeO2 (Me = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni)
656(1)
3.3.1 O3-NaScO2, O3-NaTiO2, and O3-NaVO2
656(2)
3.3.2 O3-NaCrO2
658(1)
3.3.3 O3-NaFeO2
659(1)
3.3.4 O3-NaCoO2
660(1)
3.3.5 O3-NaNiO2
660(4)
3.4 P2-Type Na2/3MeO2 (Me = V, Mn, and Co)
664(2)
3.5 Potential Jump and Na/Vacancy Ordering in Layered Oxides
666(2)
3.6 Polyanionic Materials
668(3)
4 Summary and Perspective
671(22)
Acknowledgments
674(1)
References
674(19)
20 Multivalent Charge Carriers
693(36)
Jan Bitenc
Alexandre Ponrouch
Robert Dominko
Patrik Johansson
M. Rosa Palacin
1 Introduction
693(5)
2 Magnesium-Based Batteries
698(8)
2.1 Anodes and Electrolytes
699(2)
2.2 Cathodes
701(5)
3 Calcium-Based Batteries
706(4)
3.1 Cathodes
707(1)
3.2 Anodes
708(2)
3.3 Electrolyte
710(1)
4 Aluminum-Based Batteries
710(65)
4.1 Anode
712(1)
4.2 Electrolytes
713(1)
4.3 Cathodes
714(1)
5 Technological Prospects
715(3)
6 Conclusion
718(1)
Acknowledgments
718(1)
References
719(10)
21 Aqueous Zinc Batteries
729(1)
Simon Dark
Niklas Borchers
Zenonas Jusys
R. Jurgen Behm
Birger Horstmann
1 Introduction
729(1)
2 History
730(3)
3 Zinc as an Electrode Material
733(4)
3.1 Benefits and Challenges
735(1)
3.2 Electrode Structure
736(1)
4 Alkaline Zn-Mn02 Batteries
737(3)
4.1 Operating Principle
738(1)
4.2 Manganese Dioxide Cathodes
738(1)
4.3 Anode
739(1)
4.4 Rechargeable Zinc Alkaline Manganese Dioxide Batteries
739(1)
5 Zinc-Ion Batteries
740(8)
5.1 Operating Principle
741(1)
5.2 Cathode Materials
741(1)
5.2.1 Manganese Oxides
742(1)
5.2.2 Vanadium Compounds
743(2)
5.2.3 Prussian Blue Analogs
745(1)
5.2.4 Alternative Cathode Materials
745(1)
5.3 Metal Anodes for Zinc-Ion Batteries
745(2)
5.4 Electrolytes
747(1)
6 Zinc-Air Batteries
748(17)
6.1 Operating Principle
748(3)
6.2 Cell Designs
751(2)
6.3 Zinc Metal Electrodes
753(1)
6.4 Air Electrode
754(1)
6.4.1 Gas-Diffusion Electrode
755(1)
6.4.2 Catalysts
756(5)
6.5 Electrolytes
761(4)
7 Conclusion
765(18)
Acknowledgement
766(1)
References
767(16)
22 Full-Organic Batteries
783(74)
Lionel Picard
Thibaut Gutel
1 Why Full-Organic Batteries?
783(1)
2 Advantages and Challenges Around Organic Materials
784(5)
2.1 Advantages of the Organic Materials
784(4)
2.2 Challenges
788(1)
3 The Different Configurations of Full-Organic Batteries
789(1)
4 The Main Electroactive Functions and Their Mechanisms
790(17)
4.1 Conjugated Polymers
790(4)
4.2 Organic Stable Radicals
794(3)
4.3 The Sulfur-Based Materials
797(1)
4.3.1 Organodisulfides (Molecule or Polymer) with S--S Bond in the Main Chain
798(1)
4.3.2 Organodisulfides (Molecule or Polymer) with S--S Bond in Side Chains
798(1)
4.4 Carbonyl Function
799(4)
4.5 Miscellaneous Approaches
803(1)
4.5.1 Aromatic Amines
803(1)
4.5.2 Conjugated Nitrogen
804(1)
4.5.3 Cyanide Group
805(1)
4.5.4 Azo Group
806(1)
4.5.5 Scruff Bases
806(1)
4.6 Conclusions
806(1)
5 Strategies Against Solubilization of the Active Organic Materials
807(27)
5.1 Electroactive Polymers and Electroactive Pendant Groups on Polymers
807(1)
5.1.1 Organic Radical Polymers
807(1)
5.1.2 The Sulfur-Based Polymers
808(1)
5.1.2.1 Polymeric Organodisulfides with S--S Bonds in the Main Chain
808(4)
5.1.2.2 Polymeric Organodisulfides with S--S Bonds in Side Chains
812(1)
5.1.3 The Carbonyl-Based Polymers
812(14)
5.2 Polyanionic Salt Formation
826(4)
5.3 Solid-State Electrolyte Approach
830(4)
6 Strategies for Improving Electronic Conductivity
834(3)
6.1 Carbon Additives
834(1)
6.2 Functionalization of Conducting Polymers
835(1)
6.2.1 Conducting Polymers Functionalized by TEMPO Group
836(1)
6.2.2 Conducting Polymers Functionalized by Disulfide Bonds
836(1)
6.2.3 Conducting Polymers Functionalized by Quinone Derivatives
837(1)
6.2.4 Conducting Polymers Functionalized by Ferrocene Groups
837(1)
7 Full-Organic Batteries
837(8)
7.1 n-Type Organic Materials in Full-Organic Cells
838(1)
7.2 n- and p-Type Organics in Full-Organic Dual-Ion Cells
838(3)
7.3 p-Type Organic Materials in Full-Organic Cells
841(4)
8 Concluding Remarks
845(12)
References
846(11)
Index 857
James Peck is Professor of Theatre at Muhlenberg College, USA. He is the co-editor of Performing Magic on the Western Stage (2008) and has published in many leading academic journals, including Theatre Journal, Theatre Topics, Theatre Survey, and TDR. He serves on the editorial board of Theatre Topics and on the senior advisory board to the peer reviewed section of the SDC Journal.